

Introduction

1 - The Role of the Game Designer

2 - The Basics of Art

3 - The Five Fundamentals of Game
Animation

4 - Introduction to Game Engine
Architecture

5 - 3D Concepts

6 - The Basics

READ THE LATEST ON
GAMING & ANIMATION
WITH THESE KEY TITLES

VISIT WWW.CRCPRESS.COM/GAMES-ANIMATION
TO BROWSE OUR FULL RANGE OF TITLES

SAVE 20% AND FREE STANDARD SHIPPING WITH DISCOUNT CODE
GGCV2

https://www.crcpress.com/Game-Design-Workshop-A-Playcentric-Approach-to-Creating-Innovative-Games/Fullerton/p/book/9781138098770?utm_source=shared_link&utm_medium=post&utm_campaign=B190204554
https://www.crcpress.com/3D-Game-Textures-Create-Professional-Game-Art-Using-Photoshop/Ahearn/p/book/9781138920064?utm_source=shared_link&utm_medium=post&utm_campaign=B190204554
https://www.crcpress.com/Game-Anim-Video-Game-Animation-Explained/Cooper/p/book/9781138094871?utm_source=shared_link&utm_medium=post&utm_campaign=B190204554
https://www.crcpress.com/Game-Engine-Architecture-Third-Edition/Gregory/p/book/9781138035454?utm_source=shared_link&utm_medium=post&utm_campaign=B190204554
https://www.crcpress.com/3D-Game-Environments-Create-Professional-3D-Game-Worlds/Ahearn/p/book/9781138920026?utm_source=shared_link&utm_medium=post&utm_campaign=B190204554
https://www.crcpress.com/Quick-Sketching-with-Ron-Husband/Husband/p/book/9780415823340?utm_source=shared_link&utm_medium=post&utm_campaign=B190204554
https://www.crcpress.com/games-animation
http://www.crcpress.com/games-animation?utm_source=shared_link&utm_medium=post&utm_campaign=B190204554
http://?utm_source=shared_link&utm_medium=post&utm_campaign=B190204554

Introduction

A Strategy Guide for Game Creation V.2 is relevant for those looking to hone their skil ls in video
game development. The new edition provides a brand new set of must know fundamentals and
tips in game design.

Game Design Workshop puts you to work prototyping, playtesting, and revising your own games
with time-tested methods and tools. These skills will provide the foundation for your career in
any facet of the game industry including design, producing, programming, and visual design.

The new edition of 3D Game Textures: Create Professional Game Art Using Photoshop features
the most up-to-date techniques that allow you to create your own unique textures, shaders, and
materials.

Taking readers through a complete game production, Game Anim provides a clear understanding
of expectations of the game animator at every stage, featuring game animation fundamentals
and how they f it within an overall project to offer a holistic approach to the f ield of game
animation.

In the new and improved third edition of the highly popular Game Engine Architecture, Jason
Gregory draws on his nearly two decades of experience at Midway, Electronic Arts and Naughty
Dog to present both the theory and practice of game engine software development.

From a steamy jungle to a modern city, or even a sci-f i space station, 3D Game Environments is
the ultimate resource to help you create AAA quality art for a variety of game worlds.

Quick Sketching with Ron Husband offers instruction to quick sketching and all its techniques.
From observing positive and negative space and learning to recognize simple shapes in complex
forms to action analysis and using line of action, this Disney legend teaches you how to sketch
using all these components, and how to do it in a matter of seconds.

4

THE ROLE OF THE GAME
DESIGNER

#

This chapter is excerpted from

Game Design Workshop

by Tracy Fullerton

© 2018 Taylor & Francis Group. All rights reserved.

1

Learn more

https://www.crcpress.com/Game-Design-Workshop-A-Playcentric-Approach-to-Creating-Innovative-Games/Fullerton/p/book/9781138098770?utm_source=shared_link&utm_medium=post&utm_campaign=B190204554
https://www.crcpress.com/Game-Design-Workshop-A-Playcentric-Approach-to-Creating-Innovative-Games/Fullerton/p/book/9781138098770?utm_source=shared_link&utm_medium=post&utm_campaign=B190204554

3

Chapter 1

The Role of the Game Designer

The game designer envisions how a game will work
during play. She creates the objectives, rules, and
procedures; thinks up the dramatic premise and
gives it life; and is responsible for planning everything
necessary to create a compelling player experience.
In the same way that an architect dra�s a blueprint
for a building or a screenwriter produces the script
for a movie, the game designer plans the structural
elements of a system that, when set in motion by the
players, creates the interactive experience.

As the impact of digital games has increased,
there has been an explosion of interest in game
design as a career. Now, instead of looking to
Hollywood and dreaming of writing the next block-
buster, many creative people are turning to games as
a new form of expression.

But what does it take to be a game designer?
What kinds of talents and skills do you need? What
will be expected of you during the process? And
what is the best method of designing for a game? In
this chapter, I’ll talk about the answers to these ques-
tions and outline a method of iterative design that
designers can use to judge the success of gameplay
against their goals for the player experience through-
out the design and development process. This itera-
tive method, which I call the “playcentric” approach,
relies on inviting feedback from players early on
and is the key to designing games that delight and
engage the audience because the game mechanics
are developed from the ground up with the player
experience at the center of the process.

A�A���P
The role of the game designer is, first and foremost,
to be an advocate for the player. The game designer
must look at the world of games through the player’s
eyes. This sounds simple, but you’d be surprised
how o�en this concept is ignored. It’s far too easy to
get caught up in a game’s graphics, story line, or new
features and forget that what makes a game great is
solid gameplay. That’s what excites players. Even if
they tell you that they love the special effects, art
direction, or plot, they won’t play for long unless the
gameplay hooks them.

As a game designer, a large part of your role is
to keep your concentration focused on the player
experience and not allow yourself to be distracted
by the other concerns of production. Let the art
director worry about the imagery, the producer
stress over the budget, and the technical director
focus on the engine. Your main job is to make sure
that when the game is delivered, it provides superior
gameplay.

When you first sit down to design a game, every-
thing is fresh and, most likely, you have a vision for

4  Chapter 1: The Role of the Game Designer

what it is that you want to create. At this point in the
process, your view of the game and that of the even-
tual new player are similar. However, as the process
unfolds and the game develops, it becomes increas-
ingly difficult to see your creation objectively. A�er
months of testing and tweaking every conceivable
aspect, your once-clear view can become muddled.
At times like this, it’s easy to get too close to your
own work and lose perspective.

Playtesters
It is in situations like these when it becomes critical
to have playtesters. Playtesters are people who play
your game and provide feedback on the experience
so that you can move forward with a fresh perspec-
tive. By watching other people play the game, you
can learn a great deal.

Observe their experience and try to see the
game through their eyes. Pay a�ention to what
objects they are focused on, where they touch the
screen or move the cursor when they get stuck or
frustrated or bored, and write down everything they
tell you. They are your guides, and it’s your mission
to have them lead you inside the game and illumi-
nate any issues lurking below the surface of the
design. If you train yourself to do this, you will regain
your objectivity and be able to see both the beauty
and the flaws in what you’ve created.

Many game designers don’t involve playtesters in
their process, or, if they do, it’s at the end of produc-
tion when it’s really too late to change the essential
elements of the design. Perhaps they are on a tight
schedule and feel they don’t have time for feedback.
Or perhaps they are afraid that feedback will force
them to change things they love about their design.
Maybe they think that ge�ing a playtest group
together will cost too much money. Or they might be
under the impression that testing is something only
done by large companies or marketing people.

What these designers don’t realize is that by
divorcing their process from this essential feed-
back opportunity, they probably cost themselves
considerable time, money, and creative heartache.
This is because games are not a form of one-way

communication. Being a superior game designer isn’t
about controlling every aspect of the game design or
dictating exactly how the game should function. It’s
about building a potential experience, se�ing all the
pieces in place so that everything’s ready to unfold
when the players begin to participate.

In some ways, designing a game is like being the
host of a party. As the host, it’s your job to get every-
thing ready—food, drinks, decorations, music to set the
mood—and then you open the doors to your guests
and see what happens. The results are not always pre-
dictable or what you envisioned. A game, like a party,
is an interactive experience that is only fully realized
a�er your guests arrive. What type of party will your
game be like? Will your players sit like wallflowers in
your living room? Will they stumble around trying to
find the coatroom closet? Or will they laugh and talk
and meet new people, hoping the night will never end?

Inviting players “over to play” and listening to
what they say as they experience your game is the
best way to understand how your game is working.
Gauging reactions, interpreting silent moments,
studying feedback, and matching those with specific
game elements are the keys to becoming a profes-
sional designer. When you learn to listen to your
players, you can help your game to grow.

In Chapter 9 on page 277, when I discuss the play-
testing process in detail, you’ll learn methods and pro-
cedures that will help you hold professional-quality

1.1  Playtest group

An Advocate for the Player  5

playtests and make the most of these tests by asking
good questions and listening openly to criticism. For
now, though, it’s just important to know that playtest-
ing is the heart of the design process explored in this
book and that the feedback you receive during these
sessions can help you transform your game into a
truly enjoyable experience for your players.

Like any living system, games transform through-
out their development cycle. No rule is set in stone.
No technique is absolute. No particular scheme is
the right one. If you understand how fluid the struc-
tures are, you can help mold them into the desired
shape through repeated testing and careful obser-
vation. As a game designer, it’s up to you to evolve
your game into more than you originally envisioned.
That’s the art of game design. It’s not locking things
in place; it’s giving birth and parenting. No one, no
ma�er how smart, can conceive and produce a
sophisticated game from a blank sheet of paper and
perfect it without going through this process. And
learning how to work creatively within this process is
what this book is all about.

Exercise 1.1: Become a Tester
Take on the role of a tester. Go play a game and
observe yourself as you play. Write down what
you’re doing and feeling. Try to create one page of
detailed notes on your behaviors and actions. Then
repeat this experience while watching a friend play
the same game. Compare the two sets of notes and
analyze what you’ve learned from the process.

Throughout this book, I’ve included exercises
that challenge you to practice the skills that are
essential to game design. I’ve tried to break them
down so that you can master them one by one, but
by the end of the book, you will have learned a tre-
mendous amount about games, players, and the
design process. And you will have designed, pro-
totyped, and playtested at least one original idea
of your own. I recommend creating a folder, either
digital or analog, of your completed exercises so that
you can refer to them as you work your way through
the book.

1.2 � More playtest
groups

6  Chapter 1: The Role of the Game Designer

P��S
What does it take to become a game designer? There
is no one simple answer, no one path to success.
There are some basic traits and skills I can suggest,
however. First, a great game designer is someone
who loves to create playful situations. A passion for
games and play is the one thread all great designers
have in common. If you don’t love what you’re doing,
you’ll never be able to put in the long hours neces-
sary to cra� truly innovative games.

To someone on the outside, making games
might seem like a trivial task—something that’s akin
to playing around. But it’s not. As any experienced
designer can tell you, testing your own game for
the ten thousandth time can become work, not
play. As the designer, you have to remain dedi-
cated to that ongoing process. You can’t just go
through the motions. You have to keep that pas-
sion alive in yourself, and in the rest of the team, to
make sure that the great gameplay you envisioned

in those early days of design is still there in the
exhausting, pressure-filled final days before you
lock production. To do that, you’ll need to develop
some other important skills in addition to your love
of games and your understanding of the playcen-
tric process.

Communication
The most important skill that you, as a game designer,
can develop is the ability to communicate clearly
and effectively with all the other people who will
be working on your game. You’ll have to “sell” your
game many times over before it ever hits the store
shelves: to your teammates, management, investors,
and perhaps even your friends and family. To accom-
plish this, you’ll need good language skills, a crystal-
clear vision, and a well-conceived presentation. This
is the only way to rally everyone involved to your

1.3 � Communicating
with team
members

Passions and Skills  7

cause and secure the support that you’ll need to
move forward.

But good communication doesn’t just mean writ-
ing and speaking—it also means becoming a good
listener and a great compromiser. Listening to your
playtesters and to the other people on your team
affords fresh ideas and new directions. Listening also
involves your teammates in the creative process, giv-
ing them a sense of authorship in the final design that
will reinvest them in their own responsibilities on the
project. If you don’t agree with an idea, you haven’t
lost anything, and the idea you don’t use might spark
one that you do.

What happens when you hear something that
you don’t want to hear? Perhaps one of the hard-
est things to do in life is compromise. In fact, many
game designers think that compromise is a bad
word. But compromise is sometimes necessary, and
if done well, it can be an important source of cre-
ative collaboration.

For example, your vision of the game might
include a technical feature that is simply impossible
given the available time and resources. What if your
programmers come up with an alternative imple-
mentation for the feature, but it doesn’t capture the
essence of the original design? How can you adapt
your idea to the practical necessities in such a way
as to keep the gameplay intact? You’ll have to com-
promise. As the designer, it’s your job to find a way
to do it elegantly and successfully so that the game
doesn’t suffer.

Teamwork
Game production can be one of the most intense
collaborative processes you’ll ever experience.
The interesting and challenging thing about game
development teams is the sheer breadth of types
of people who work on them. From the hardcore
computer scientists, who might be designing the AI
or graphic displays, to the talented illustrators and
animators who bring the characters to life, to the
money-minded executives and business managers
who deliver the game to its players, the range of per-
sonalities is incredible.

As the designer, you will interact with almost all
of them, and you will find that they all speak different
professional languages and have different points of
view. Overly technical terms may not translate well to
artists or the producer, while the subtle shadings of a
character sketch might not be instantly obvious to a
programmer. These are generalizations, of course, and
many team members may come from multidisciplinary
backgrounds, but you can’t always count on that. So a
big part of your job, and one of the reasons for your
documents and specifications, is to serve as a sort of
universal translator, making sure that all of these dif-
ferent groups are, in fact, working on the same game.

Throughout this book, I o�en refer to the game
designer as a single team member, but in many cases,
the task of game design is a team effort. Whether
there is a team of designers on a single game or a
collaborative environment where the visual design-
ers, programmers, or producer all have input to the
design, the game designer rarely works alone. In
Chapter 12 on page 391, I will discuss team structures
and how the game designer fits into the complicated
puzzle that is a development team.

Process
Being a game designer o�en requires working under
great pressure. You’ll have to make critical changes
to your game without causing new issues in the pro-
cess. All too o�en, a game becomes unbalanced
as a�empts are made to correct an issue because

1.4  Team meeting

8  Chapter 1: The Role of the Game Designer

the designer gets too close to the work and, in the
hopes of solving one problem, introduces a host of
new problems. But, unable to see this mistake, the
designer keeps making changes, while the problems
grow worse, until the game becomes such a mess
that it loses whatever magic it once had.

Games are fragile systems, and each element is
inextricably linked to the others, so a change in one
variable can send disruptive ripples throughout.
This is particularly catastrophic in the final phases
of development, where you run out of time, mis-
takes are le� unfixed, and portions of the game are
amputated in hopes of saving what’s le�. It’s grue-
some, but it might help you understand why some
games with so much potential seem D.O.A.

The one thing that can rescue a game from this
terrible fate is instilling in your team the need for
good processes from the beginning. Production is
a messy business; it is where ideas can get convo-
luted and objectives can disappear in the chaos of
daily crises. But good process, using the playcentric
approach of playtesting, and controlled, iterative
changes, which I’ll discuss throughout this book, can
help you stay focused on your goals, prioritize what’s
truly important, and avoid the pitfalls of an unstruc-
tured approach.

Exercise 1.2: D.O.A.
Take one game that you’ve played that was D.O.A.
By D.O.A., I mean “dead on arrival” (i.e., a game
that’s no fun to play). Write down what you don’t like
about it. What did the designers miss? How could
the game be improved?

Inspiration
A game designer o�en looks at the world differently
from most people. This is in part because of the pro-
fession and in part because the art of game design
requires someone who is able to see and analyze the
underlying relationships and rules of complex systems
and to find inspiration for play in common interactions.

When a game designer looks at the world, he o�en
sees things in terms of challenges, structures, and
play. Games are everywhere, from how we manage
our money to how we form relationships. Everyone
has goals in life and must overcome obstacles to
achieve those goals. And, of course, there are rules.
If you want to win in the financial markets, you have
to understand the rules of trading stocks and bonds,
profit forecasts, IPOs, and so forth. When you play
the markets, the act of investing becomes very similar

1.5 � Systems all
around us

Passions and Skills  9

to a game. The same holds true for winning some-
one’s heart. In courtship, there are social rules that
you must follow, and it’s in understanding these rules
and how you fit into society that helps you to succeed.

If you want to be a game designer, try looking
at the world in terms of its underlying systems. Try
to analyze how things in your life function. What are
the underlying rules? How do the mechanics oper-
ate? Are there opportunities for challenge or play-
fulness? Write down your observations and analyze
the relationships. You’ll find there is potential for
play all around you that can serve as the inspira-
tion for a game. You can use these observations and
inspirations as foundations for building new types of
gameplay.

Why not look at other games for inspiration?
Well, of course, you can and you should. I’ll talk about
that in just a minute. But if you want to come up with
truly original ideas, then don’t fall back on existing
games for all your ideas. Instead, look at the world
around you. Some of the things that have inspired
other game designers, and could inspire you, are
obvious: personal relationships, buying and selling,
competition in the workplace, and on and on. Take
ant colonies, for example: They’re organized around
a sophisticated set of rules, and there’s competi-
tion both within the colonies and between compet-
ing insect groups. Well-known game designer Will
Wright made a game about ant colonies in 1991,
SimAnt. “I was always fascinated by social insects,” he
says. “Ants are one of the few real examples of intel-
ligence we have that we can study and deconstruct.
We’re still struggling with the way the human brain
works. But if you look at ant colonies, they some-
times exhibit a remarkable degree of intelligence.”1
The game itself was something of a disappointment
commercially, but the innate curiosity about how the
world works that led Wright to ant colonies has also
led him to look at ecological systems such as the Gaia
hypothesis as inspiration for SimEarth or psychologi-
cal theories such as Maslow’s Hierarchy of Needs
as inspiration for artificial intelligence in The Sims.
Having a strong sense of curiosity and a passion for
learning about the world is clearly an important part
of Wright’s inspiration as a game designer.

What inspires you? Examine things that you are
passionate about as systems; break them down in
terms of objects, behaviors, relationships, and so
forth. Try to understand exactly how each element of
the system interacts. This can be the foundation for
an interesting game. By practicing the art of extracting
and defining the games in all aspects of your life, you
will not only hone your skills as a designer, but you’ll
open up new vistas in what you imagine a game can be.

Exercise 1.3: Your Life as a Game
List five areas of your life that could be games. Then
briefly describe a possible underlying game struc-
ture for each.

Becoming a Be�er Player
One way to become an advocate for players is by
being a be�er player yourself. By “be�er,” I don’t
just mean more skilled or someone who wins all the
time—although by studying game systems in depth,
you will undoubtedly become a more skilled player.
What I mean is using yourself and your experiences
with games to develop an unerring sense for good
gameplay. The first step to practicing any art form is
to develop a deep understanding of what makes that
art form work. For example, if you’ve ever studied a
musical instrument, you’ve probably learned to hear
the relationship between the various musical tones.
You’ve developed an ear for music. If you’ve stud-
ied drawing or painting, it’s likely that your instructor
has urged you to practice looking carefully at light
and texture. You’ve developed an eye for visual com-
position. If you are a writer, you’ve learned to read
critically. And if you want to be a game designer, you
need to learn to play with the same conscious sensi-
tivity to your own experience and critical analysis of
the underlying system that these other arts demand.

The following chapters in this section look at the
formal, dramatic, and dynamic aspects of games.
Together, the concepts in these chapters form a
set of tools that you can use to analyze your game-
play experiences and become a be�er, or more

10  Chapter 1: The Role of the Game Designer

articulate, player and creative thinker. By practicing
these skills, you will develop a game literacy that will
make you a be�er designer. Literacy is the ability to
read and write a language, but the concept can also
be applied to media or technology. Being game liter-
ate means understanding how game systems work,
analyzing how they make meaning, and using your
understanding to create your own game systems.

I recommend writing your analysis in a game jour-
nal. Like a dream journal or a diary, a game journal
can help you think through experiences you’ve had
and to remember details of your gameplay long a�er-
wards. As a game designer, these are valuable insights
that you might otherwise forget. It is important when
writing in your game journal to try to think deeply
about your game experience—don’t just review the
game and talk about its features. Discuss a mean-
ingful moment of gameplay. Try to remember it in
detail—why did it strike you? What did you think, feel,
do, and so forth? What are the underlying mechanics
that made the moment work? The dramatic aspects?
Perhaps your insights will form the basis for a future
design, perhaps not. But, like sketching or practicing
scales on a musical instrument, the act of writing and
thinking about design will help you to develop your
own way of thinking about games, which is critical to
becoming a game designer.

Exercise 1.4: Game Journal
Start a game journal. Don’t just try to describe the
features of the game, but dig deeply into the choices
you made, what you thought and felt about those
choices, and the underlying game mechanics that
supports those choices. Go into detail; look for the
reasons why various mechanics of the game exist.
Analyze why one moment of gameplay stands out
and not another. Commit to writing in your game
journal every day.

Creativity
Creativity is hard to quantify, but you’ll definitely
need to access your creativity to design great

games. Everyone is creative in different ways.
Some people come up with lots of ideas with-
out even trying. Others focus on one idea and
explore all of its possible facets. Some sit quietly
in their rooms thinking to themselves, while oth-
ers like to bounce ideas around with a group, and
they find the interaction to be stimulating. Some
seek out stimulation or new experiences to spark
their imaginations. Great game designers like Will
Wright tend to be people who can tap into their
dreams and fantasies and bring those to life as
interactive experiences.

Another great game designer, Nintendo’s Shigeru
Miyamoto, says that he o�en looks to his childhood
and to hobbies that he enjoys for inspiration. “When
I was a child, I went hiking and found a lake,” he says.
“It was quite a surprise for me to stumble upon it.
When I traveled around the country without a map,
trying to find my way, stumbling on amazing things
as I went, I realized how it felt to go on an adventure
like this.”2 Many of Miyamoto’s games draw from this
sense of exploration and wonder that he remembers
from childhood.

Think about your own life experiences. Do you
have memories that might spark the idea for a game?
One reason that childhood can be such a powerful
inspiration for game designers is that when we are
children, we are particularly engrossed in playing
games. If you watch how kids interact on a play-
ground, it’s usually through gameplaying. They make
games and learn social order and group dynamics
from their play. Games permeate all aspects of kids’
lives and are a vital part of their developmental pro-
cess. So if you go back to your childhood and look at
things that you enjoyed, you’ll find the raw material
for games right there.

Exercise 1.5: Your Childhood
List ten games you played as a child, for exam-
ple, hide and seek, four square, and tag. Briefly
describe what was compelling about each of those
games.

Passions and Skills  11

Creativity might also mean pu�ing two things
together that don’t seem to be related—like
Shakespeare and the Brady Bunch. What can you
make of such a strange combination? Well, the
designers of You Don’t Know Jack used silly com-
binations of high- and low-brow knowledge like
this to create a trivia game that challenged players
to be equally proficient in both. The result was a
hit game with such creative spark that it crossed
the usual boundaries of gaming, appealing to play-
ers old and young, male and female.

Sometimes creative ideas just come to you, and
the trick is to know when to stand by a game idea
that seems far-fetched. Keita Takahashi, designer
of the quirky and innovative hit game Katamari
Damacy, was given an assignment while work-
ing at Namco to come up with an idea for a racing
game. The young artist and sculptor wanted to do
something more original than a racing game, how-
ever, and says he just “came up with” the idea for
the game mechanic of a sticky ball, or katamari,
that players could roll around, picking up objects
that range from paper clips and sushi to palm trees
and policemen. Takahashi has said inspiration for
the game came from sources as wildly different as
the paintings of Pablo Picasso, the novels of John
Irving, and Playmobil brand toys, but it is also clear
that Takahashi has been influenced by Japanese
children’s games and sports such as tamakorogashi
(ballroller) as a designer and is thinking beyond digi-
tal games for his future creations. “I would like to

create a playground for children,” he said. “A normal
playground is flat but I want an undulating one, with
bumps.”3

I recently designed a game about Henry David
Thoreau’s time at Walden Pond. I was inspired by
his writings and by the thought that underlying
his philosophical experiment was an interesting
set of rules that he was “playing by” when he set
out to “live deliberately.” The game took ten years
to make and required a deep commitment to the
original idea over those years. When we started
making it, the idea of an indie game “about” some-
thing like a philosopher’s experiment in living was
considered somewhat strange and new. Today,
personal games, and games about ideas or expe-
riences, are relatively common, especially in the
indie space.

Our past experiences, our other interests, our
relationships, and our identity all come into play when
trying to reach our creativity. Great game designers
find a way to tap into their creative souls and bring
forth the best parts in their games. However you do
it, whether you work alone or in a team, whether you
read books or climb mountains, whether you look to
other games for inspiration or to life experiences,
the bo�om line is that there’s no single right way to
go about it. Everyone has a different style for com-
ing up with ideas and being creative. What ma�ers
is not the spark of an idea but what you do with that
idea once it emerges, and this is where the playcen-
tric process becomes critical.

1.7 � Beautiful katamari and tamakorogashi

1.6 � You Don’t
Know Jack

12  Chapter 1: The Role of the Game Designer

A�P�D�P
Having a good solid process for developing an idea
from the initial concept into a playable and satisfy-
ing game experience is another key to thinking like a
game designer. The playcentric approach I will illus-
trate in this book focuses on involving the player in
your design process from conception through com-
pletion. By that I mean continually keeping the player
experience in mind and testing the gameplay with
target players through every phase of development.

Se�ing Player Experience Goals
The sooner you can bring the player into the equation,
the be�er, and the first way to do this is to set “player
experience goals.” Player experience goals are just
what they sound like: goals that the game designer
sets for the type of experience that players will have
during the game. These are not features of the game
but rather descriptions of the interesting and unique
situations in which you hope players will find them-
selves. For example, “players will have to cooperate
to win, but the game will be structured so they can
never trust each other,” “players will feel a sense of
happiness and playfulness rather than competitive-
ness,” or “players will have the freedom to pursue the
goals of the game in any order they choose.”

Se�ing player experience goals up front, as a part
of your brainstorming process, can also focus your
creative process. Notice that these descriptions do
not talk about how these experience goals will be
implemented in the game. Features will be brain-
stormed later to meet these goals, and then they will
be playtested to see if the player experience goals
are being met. At first, though, I advise thinking at a
very high level about what is interesting and engaging
about your game to players while they are playing and
what experiences they will describe to their friends
later to communicate the high points of the game.

Learning how to set interesting and engaging
player experience goals means ge�ing inside the
heads of the players, not focusing on the features of
the game as you intend to design it. When you’re just
beginning to design games, one of the hardest things

to do is to see beyond features to the actual game
experience the players are having. What are they
thinking as they make choices in your game? How
are they feeling? Are the choices you’ve offered as
rich and interesting as they can be?

Prototyping and Playtesting
Another key component to playcentric design is that
ideas should be prototyped and playtested early. I
encourage designers to construct a playable version
of their idea immediately a�er brainstorming ideas.
By this I mean a physical prototype of the core game
mechanics. A physical prototype can use paper
and pen or index cards or even be acted out. It is
meant to be played by the designer and her friends.
The goal is to play and perfect this simplistic model
before a single programmer, producer, or graphic
artist is ever brought onto the project. This way, the
game designer receives instant feedback on what
players think of the game and can see immediately
if they are achieving their player experience goals.

This might sound like common sense, but in the
industry today, much of the testing of the core game
mechanics comes later in the production cycle,
which can lead to disappointing results. Because
many games are not thoroughly prototyped or tested
early, flaws in the design aren’t identified until late in
the process—in some cases, too late to fix. People
in the industry are realizing that this lack of player
feedback means that many games don’t reach their
full potential, and the process of developing games
needs to change if that problem is to be solved.
The work of professional user research experts like
Nicole Lazzaro of XEODesign and Dennis Wixon
of Microso� (see their sidebars on pages 282 and
303) is becoming more and more important to
game designers and publishers in their a�empts to
improve game experiences, especially with the new,
sometimes inexperienced, game players that are
being a�racted to platforms like smartphones or
tablets. You don’t need to have access to a profes-
sional test lab to use the playcentric approach. In

Designers You Should Know  13

D�Y�S�K
The following is a list of designers who have had a monumental impact on digital games. The list was hard to
finalize because so many great individuals have contributed to the cra� in so many important ways. The goal
was not to be comprehensive but rather to give a taste of some designers who have created foundational
works and who it would be good for you, as an aspiring designer yourself, to be familiar with. I’m pleased that
many designers on the list contributed interviews and sidebars to this book.

Shigeru Miyamoto
Miyamoto was hired out of industrial design school by Nintendo in 1977. He was the first staff artist at the
company. Early in his career, he was assigned to a submarine game called Radarscope. This game was like most
of the games of the day—simple twitch-game play mechanics, no story, and no characters. He wondered why
digital games couldn’t be more like the epic stories and fairy tales that he knew and loved from childhood. He
wanted to make adventure stories, and he wanted to add emotion to games. Instead of focusing on Radarscope,
he made up his own beauty-and-the-beast-like story where an ape steals his keeper’s girlfriend and runs away.
The result was Donkey Kong, and the character that you played was Mario (originally named Jumpman). Mario
is perhaps the most enduring character in games and one of the most recognized characters in the world. Each
time a new console is introduced by Nintendo—starting with the original NES machine—Miyamoto designs a
Mario game as its flagship title. He is famous for the wild creativity and imagination in his games. Aside from all
the Mario and Luigi games, Miyamoto’s list of credits is long. It includes the games Zelda, Starfox, and Pikmin.

Will Wright
Early in his career, in 1987, Wright created a game called Raid on Bungling Bay. It was a helicopter game where
you a�acked islands. He had so much fun programming the li�le cities on the islands that he decided that mak-
ing cities was the premise for a fun game. This was the inspiration for SimCity. When he first developed SimCity,
publishers were not interested because they didn’t believe anyone would buy it. But Wright persisted, and the
game became an instant hit. SimCity was a breakout in terms of design in that it was based on creating rather
than destroying. Also, it didn’t have set goals. These things added some new facets to games. Wright was always
interested in simulated reality and has done more than anyone in bringing simulation to the masses. SimCity
spawned a whole series of titles, including SimEarth, SimAnt, SimCopter, and many others. His game The Sims
is currently the bestselling game of all time, and Spore, his most ambitious project yet, explores new design
territory in terms of user-created content. See “A Conversation with Will Wright by Celia Pearce” on page 183.

Sid Meier
Legend has it that Sid Meier bet his buddy, Bill Stealey, that within two weeks he could program a be�er flying
combat game than the one they were playing. Stealey took him up on the offer, and together they founded the
company Micro Prose. It took more than two weeks, but the company released the title Solo Flight in 1984.
Considered by many to be the father of PC gaming, Meier went on to create groundbreaking title a�er ground-
breaking title. His Civilization series has had a fundamental influence on the genre of PC strategy games.
His game Sid Meier’s Pirates! was an innovative mix of genres—action, adventure, and role-playing—that also

14  Chapter 1: The Role of the Game Designer

blended real-time and turn-based gaming. His gameplay ideas have been adopted in countless PC games.
Meier’s other titles include Colonization, Sid Meier’s Ge�ysburg!, Alpha Centauri, and Silent Serv.

Warren Spector
Warren Spector started his career working for board game maker Steve Jackson Games in Austin, Texas.
From there, he went on to the paper-based role-playing game company TSR, where he developed board
games and wrote RPG supplements and several novels. In 1989, he was ready to add digital games to his
portfolio and moved to the developer ORIGIN Systems. There, he worked on the Ultima series with Richard
Garrio�. Spector had an intense interest in integrating characters and stories into games. He pioneered
“free-form” gameplay with a series of innovative titles, including Underworld, System Shock, and Thief. His
title Deus Ex took the concepts of flexible play and drama in games to new heights and is considered one of
the finest PC games of all time. See his “Designer Perspective” interview on page 27.

Brenda Romero
Brenda Romero began her career at Sir-tech So�ware as part of the Wizardry role-playing team, where
she worked her way up from testing to designer for Wizardry 8. While at Sir-tech, she also worked on the
Jagged Alliance and Realms of Arkania series before moving to Atari to work on Dungeons & Dragons.
Throughout her career, she has been a passionate advocate for diversity in the industry and was awarded
the Ambassador Award from the Game Developers Conference as well as a special British Academy for
Film and Television Arts award for her contributions to the industry. On page 88, she discusses her ground-
breaking analog game series The Mechanic Is the Message.

Richard Garfield
In 1990, Richard Garfield was an unknown mathematician and part-time game designer. He had been try-
ing unsuccessfully to sell a board game prototype called RoboRally to publishers for seven years. When
yet another publisher rejected his concept, he was not surprised. However, this time the publisher, a man
named Peter Adkison doing business as Wizards of the Coast, asked for a portable card game that was play-
able in under an hour. Garfield took the challenge and developed a dueling game system where each card in
the system could affect the rules in different ways. It was a breakthrough in game design because the system
was infinitely expandable. The game was Magic: The Gathering, and it singlehandedly spawned the industry
of collectible card games. Magic has been released in digital format in multiple titles. When Hasbro bought
Wizards of the Coast in 1995 for $325 million, Garfield owned a significant portion of the company. See his
article “The Design Evolution of Magic: The Gathering” on page 219.

Amy Hennig
Amy Hennig began her career in the game industry working as an artist and animator on games for the NES.
While she was working at Electronic Arts as an artist on Michael Jordan: Chaos in the Windy City, the lead
designer le� the project and Hennig landed the job. Later, she moved to Crystal Dynamics, where she was
director, producer, and writer for Legacy of Kain: Soul Reaver. She is well known for her work as a game
director and writer on some of the most successful titles in the industry, including the Uncharted series for

Designers You Should Know  15

Naughty Dog and Sony. She has been awarded two Writers Guild of America Video Game Writing Awards
in addition to numerous other awards for her work on the Uncharted games. She describes her writing work
on this series as being on the “bleeding edge” of the genre of cinematic video games.

Peter Molyneux
The story goes that it all started with an anthill. As a child, Peter Molyneux toyed with one—tearing it down in
parts and watching the ants fight to rebuild, dropping food into the world and watching the ants appropriate
it, and so on. He was fascinated by the power he had over the tiny, unpredictable creatures. Molyneux went
on to become a programmer and game designer and eventually the pioneer of digital “god games.” In his
breakout title, Populous, you act as a deity lording it over tiny se�lers. The game was revolutionary in that it
was a strategy game that took place in real time, as opposed to in turns, and you had indirect control over
your units. The units had minds of their own. This game and other Molyneux hits had a profound influence on
the real-time strategy (RTS) games that were on the horizon. Other titles he has created include Syndicate,
Theme Park, Dungeon Keeper, and Black & White.

Gary Gygax
In the early 1970s, Gary Gygax was an insurance underwriter in Lake Geneva, Wisconsin. He loved all kinds
of games, including tabletop war games. In these games, players controlled large armies of miniatures, act-
ing like generals. Gygax and his friends had fun acting out the personas of different pieces on the ba�lefield
such as commanders, heroes, and so forth. He followed his inclination of what was fun and created a system
for ba�ling small parties of miniatures in a game he called Chainmail. From there players wanted even more
control over and more character information about the individual units. They wanted to play the role of
single characters. Gygax, in conjunction with game designer Dave Arneson, developed an elaborate system
for role-playing characters that was eventually named Dungeons & Dragons. The D&D game system is the
direct ancestor of every paper-based and digital RPG since then. The system is directly evident in all of
today’s RPGs, including Diablo, Baldur’s Gate, and World of Warcra�.

Richard Garriott
Richard Garrio�—a.k.a. “Lord British”—programmed his first game right out of high school in 1979. It was an
RPG called Akalabeth. He sold it on his own through a local computer store in Austin, Texas. The packaging
for this first version was a Ziploc bag. Akalabeth later got picked up by a publisher and sold well. Garrio�
used what he learned to create Ultima, one of the most famous game series of all time. The Ultima titles
evolved over the years—each successive one pushing the envelope in terms of both technology and game-
play—eventually bringing the world of the game online. Ultima Online, released in 1997, was a pioneering title
in massively multiplayer online worlds. Garrio� continues to push the boundaries of online gaming with work
on the science fiction MMO Tabula Rasa.

Dona Baily
Dona Baily was a young programmer in 1981 who, along with Ed Logg, created the classic arcade video game
Centipede. At the time, when Baily joined Atari’s coin-op division, she was the only woman employed there.
When given a notebook of ideas for possible games to program, all of which involved “lasering or frying

16  Chapter 1: The Role of the Game Designer

Chapter 9, I describe a number of methods you can
use on your own to produce useful improvements to
your game design.

I suggest that you do not begin production with-
out a deep understanding of your player experi-
ence goals and your core mechanics. This is critical
because when the production process commences,
it becomes increasingly difficult to alter the so�ware
design. Therefore, the further along the design and
prototyping are before the production begins, the
greater the likelihood of avoiding costly mistakes.
You can ensure that your core design concept is
sound before production begins by taking a play-
centric approach to the design and development
process.

Iteration
By “iteration” I simply mean that you design, test, and
evaluate the results over and over again throughout
the development of your game, each time improv-
ing upon the gameplay or features, until the player
experience meets your criteria. Iteration is deeply
important to the playcentric process. Here is a
detailed flow of the iterative process that you should
go through when designing a game:

•• Player experience goals are set.
•• An idea or system is conceived.

•• An idea or system is formalized (i.e., wri�en
down or prototyped).

•• An idea or system is tested against player expe-
rience goals (i.e., playtested or exhibited for
feedback).

•• Results are evaluated and prioritized.
•• If results are negative and the idea or system

appears to be fundamentally flawed, go back to
the first step.

•• If results point to improvements, modify and test
again.

•• If results are positive and the idea or system
appears to be successful, the iterative process
has been completed.

As you will see, this process is applicable during
every aspect of game design, from initial conception
through final quality assurance testing.

Step 1: Brainstorming
•• Set player experience goals.
•• Come up with game concepts or mechanics that you

think might achieve your player experience goals.
•• Narrow the list down to the top three.
•• Write up a short, one-page description for each

of these ideas, sometimes called a treatment or
concept document.

things,” she chose a short description of a bug winding down the screen because, she said, “it didn’t seem
bad to shoot a bug.” Centipede went on to become one of the most commercially successful games from
the arcade era’s golden age.

Gerald Lawson
Gerald Lawson was an electronic engineer known for his work in the 1970s, designing the Fairchild Channel
F video game system and inventing the video game cartridge. The Fairchild Channel F console, while not
a commercially successful product, introduced the idea that game so�ware could be stored on swappable
cartridges for the first time. Prior to the Channel F, most game systems had the game so�ware programmed
into the architecture of the hardware, so games could never be added to or updated. Lawson’s invention
was so novel that every cartridge he produced had to be approved by the FCC before distribution as new
product. Quickly, his invention became the standard for all future game consoles. Lawson was one of the
few African-American engineers working in the industry at that time.

A Playcentric Design Process  17

•• Test your wri�en concepts with potential play-
ers (you might also want to create rough visual
mock-ups of your ideas at this stage to help com-
municate the ideas).

Step 2: Physical Prototype
•• Create a playable prototype using pen and paper

or other cra� materials.
•• Playtest the physical prototype using the pro-

cess described in Chapters 7 and 9.
•• When the physical prototype demonstrates

working gameplay that achieves your player expe-
rience goals, write a three- to six-page gameplay
treatment describing how the game functions.

Step 3: Presentation (Optional)
•• A presentation is o�en made to secure funds

to hire the prototyping team. Even if you do
not require funding, going through the exercise
of creating a full presentation is a good way to
think through your game and introduce it to team
members and upper management for feedback.

•• Your presentation should include demo artwork
and a solid gameplay treatment.

•• If you do not secure funding, you can either return
to step 1 and start over again on a new concept or
solicit feedback from your funding sources and
work on modifying the game to fit their needs.
Because you have not yet invested in extensive
artwork or programming, your costs so far should

be pre�y reasonable, and you should have a great
deal of flexibility to make any changes.

Step 4: Software Prototype(s)
•• When you have your prototyping team in place,

you can begin creating rough digital models of
the core gameplay. O�en, several so�ware pro-
totypes are made, each focusing on different
aspects of the system. Digital prototyping is dis-
cussed in Chapter 8 beginning on page 241. (If
possible, try to do this entirely with temporary
graphics that cost very li�le to make. This will
save time and money and speed up the process.)

•• Playtest the so�ware prototype(s) using the
method process described in Chapter 9.

•• When the so�ware prototype(s) demonstrate
working gameplay that achieves your player
experience goals, move on to develop plans for
the full feature set and levels of the game.

Step 5: Design Documentation
•• While you have been prototyping and working on

your gameplay, you have probably been compil-
ing notes and ideas for the “real” game. Use the
knowledge you’ve gained during this prototyping
stage to develop a full list of goals for the game,
which are documented in a way that is useful and
accessible for the team.

•• Recently, many designers have moved away from
creating large static documents for this purpose,
moving instead toward online groupware like
wikis and smaller, as-needed form documenta-
tion because of the flexible, collaborative nature
of modern design processes. The design docu-
mentation that comes out of your production
process should be thought of as a collaboration
tool that changes and grows with production.

Step 6: Production
•• Work with all team members to make sure your

goals are clear and achievable and that the
team is on board with the priorities for these
goals.

1.8  Iterative process diagram

18  Chapter 1: The Role of the Game Designer

T�I�D�P
by Eric Zimmerman, game designer and professor, NYU Game Center

Eric Zimmerman is a game designer and a twenty-year veteran of the game industry. Eric cofounded
Gamelab, an award-winning New York City-based studio that helped invent casual games with titles like
Diner Dash. Other projects range from the pioneering independent online game SiSSYFiGHT 2000 to table-
top games like the strategy board game Quantum and Local No. 12’s card game The Metagame. Eric has also
created game installations with architect Nathalie Pozzi that have been exhibited in museums and festivals
around the world. He is the coauthor with Katie Salen of Rules of Play and is a founding faculty and arts pro-
fessor at the NYU Game Center. Also see his article with Nathalie Pozzi on playtesting methods on page 293.

The following excerpt is adapted from a longer essay entitled “Play as Research,” which appears in the
book Design Research, edited by Brenda Laurel (MIT Press, 2004). It appears here with permission from the
author. Iterative design is a design methodology based on a cyclic process of prototyping, testing, analyzing,
and refining a work in progress. In iterative design, interaction with the designed system is the basis of the
design process, informing and evolving a project as successive versions, or iterations, of a design are imple-
mented. This sidebar outlines the iterative process as it occurred in one game with which I was involved—the
online multiplayer game SiSSYFiGHT 2000.

What is the process of iterative design? Test, analyze, refine. And repeat. Because the experience of a player
cannot ever be completely predicted, in an iterative process design, decisions are based on the experience
of the prototype in progress. The prototype is tested, revisions are made, and the project is tested once
more. In this way, the project develops through an ongoing dialogue between the designers, the design, and
the testing audience.

In the case of games, iterative design means playtesting. Throughout the entire process of design and
development, your game is played. You play it. The rest of the development team plays it. Other people in
the office play it. People visiting your office play it. You organize groups of testers that match your target
audience. You have as many people as possible play the game. In each case, you observe them, ask them
questions, then adjust your design and playtest again.

This iterative process of design is radically different from typical retail game development. More o�en
than not, at the start of the design process for a computer or console title, a game designer will think up a
finished concept and then write an exhaustive design document that outlines every possible aspect of the
game in minute detail. Invariably, the final game never resembles the carefully conceived original. A more
iterative design process, on the other hand, will not only streamline development resources, but it will also
result in a more robust and successful final product.

Case Study: SiSSYFiGHT 2000
SiSSYFiGHT 2000 is a multiplayer online game in which players create a schoolgirl avatar and then vie with
three to six players for dominance of the playground. Each turn, a player selects one of six actions to take, rang-
ing from teasing and ta�ling to cowering and licking a lolly. The outcome of an action is dependent on other
players’ decisions, making for highly social gameplay. SiSSYFiGHT 2000 is also a robust online community. You

The Iterative Design Process  19

can play the game at www.sissyfight.com. In the summer of 1999, I was hired by Word.com to help them create
their first game. We initially worked to identify the project’s play values: the abstract principles that the game
design would embody. The list of play values we created included designing for a broad audience of nongam-
ers, a low technology barrier, a game that was easy to learn and play but deep and complex, gameplay that
was intrinsically social, and, finally, something that was in line with the smart and ironic Word.com sensibility.

These play values were the parameters for a series of brainstorming sessions interspersed with group
play of computer and noncomputer games. Eventually, a game concept emerged: li�le girls in social conflict
on a playground. While every game embodies some kind of conflict, we were drawn toward modeling a con-
flict that we hadn’t seen depicted previously in a game. Technology and production limitations meant that
the game would be turn based, although it could involve real-time chat.

When these basic formal and conceptual questions had begun to be mapped out, the shape of the initial
prototype became clear. The very first version of SiSSYFiGHT was played with Post-it Notes around a confer-
ence table. I designed a handful of basic actions each player could take, and acting as the program, I “pro-
cessed” the actions each turn and reported the results back to the players, keeping score on a piece of paper.

Designing a first prototype requires strategic thinking about how to most quickly implement a playable
version that can begin to address the project’s chief uncertainties in a meaningful way. Can you create a
paper version of your digital game? Can you design a short version of a game that will last much longer in its
final form? Can you test the interaction pa�ern of a massively multiplayer game with just a handful of players?

In the iterative design process, the most detailed thinking you need at any moment is that which will get
you to your next prototype. It is, of course, important to understand the big picture as well: the larger con-
ceptual, technical, and design questions that drive the project as a whole. Just be sure not to let your design
get ahead of your iterative research. Keep your eye on the prize, but leave room for play in your design, for
the potential to change as you learn from your playtesting, accepting the fact that some of your assumptions
will undoubtedly be wrong.

The project team continued to develop the paper prototype, seeking the balance between cooperation and
competition that would become the heart of the final gameplay. We refined the base rule set—the actions a
player can take each turn and the outcomes that result. These rules were turned into a specification for the first
digital prototype: a text-only version on IRC, which we played hot-seat style, taking turns si�ing at the same com-
puter. Constructing that early, text-only
prototype allowed us to focus on the com-
plexities of the game logic without worry-
ing about implementing interactivity, visual
and audio aesthetics, and other aspects of
the game.

While we tested gameplay via the text-
only iteration, programming for the final
version began in Director, and the core
game logic we had developed for the IRC
prototype was recycled into the Director
code with li�le alteration. Parallel to the
game design, the project’s visual design-
ers had begun to develop the graphic SiSSYFiGHT 2000 Interface

http://www.sissyfight.com

20  Chapter 1: The Role of the Game Designer

language of the game and chart out possible screen layouts. These early dra�s of the visuals (revised many
times over the course of the entire development) were dropped into the Director version of the game, and the
first rough-hewn iteration of SiSSYFiGHT as a multiplayer online game took shape, inspired by Henry Darger’s
outsider art and retro game graphics.

As soon as the web version was playable, the develop-
ment team played it. And as our ugly duckling grew more
refined, the rest of the Word.com staff was roped into test-
ing as well. As the game grew more stable, we descended
on our friends’ dot-com companies a�er the workday had
ended, si�ing them down cold in front of the game and let-
ting them play. All of this testing and feedback helped us
refine the game logic, visual aesthetics, and interface. The
biggest challenge turned out to be clearly articulating the
relationship between player action and game outcome:
Because the results of every turn are interdependent on
each player’s actions, early versions of the game felt frus-
tratingly arbitrary. Only through many design revisions and
dialogue with our testers did we manage to structure the
results of each turn to unambiguously communicate what
had happened that round and why.

When the server infrastructure was completed, we
launched the game to an invitation-only beta tester com-
munity that slowly grew in the weeks leading up to public
release. Certain time slots were scheduled as official test-
ing events, but our beta users could come online anytime
and play. We made it very easy for the beta testers to con-
tact us and e-mail in bug reports.

Even with this small sample of a few dozen partici-
pants, larger play pa�erns emerged. For example, as with
many multiplayer games, it was highly advantageous to play
defensively, leading to standstill matches. In response, we
tweaked the game logic to discourage this play style: Any player that “cowered” twice in a row was penalized
for acting like a chicken. When the game did launch, our loyal beta testers became the core of the game
community, easing new players into the game’s social space.

In the case of SiSSYFiGHT 2000, the testing and prototyping cycle of iterative design was successful
because at each stage we clarified exactly what we wanted to test and how. We used wri�en and online
questionnaires. We debriefed a�er each testing session. And we strategized about how each version of the
game would incorporate the visual, audio, game design, and technical elements of the previous versions,
while also laying a foundation for the final form of the experience.

To design a game is to construct a set of rules. But the point of game design is not to have players experi-
ence rules—it is to have players experience play. Game design is therefore a second-order design problem in
which designers cra� play, but only indirectly, through the systems of rules that game designers create. Play

SiSSYFiGHT 2000 Game Interfaces

The Iterative Design Process  21

•• Staff up with a full team and plan a set of devel-
opment “sprints” for each of the goals in your
plan. Evaluate your game as a team a�er each
sprint to make sure you are still on target with
your player experience goals.

•• Don’t lose sight of the playcentric process during
production—test your artwork, gameplay, char-
acters, and so forth as you move along. As you
continue to perform iterative cycles throughout
the production phase, the problems you find and
the changes you make should get smaller and
smaller. This is because you resolved your major
issues during the prototyping phases.

•• Unfortunately, this is the time when most game
designers actually wind up designing their games,
and this can lead to numerous problems related
to time, money, and frustration.

Step 7: Quality Assurance
•• By the time the project is ready for quality assur-

ance testing, you should be very sure that your
gameplay is solid. There can still be some issues,
so continue playtesting with an eye to usability.
Now is the time to make sure your game is acces-
sible to your entire target audience.

As you can see, the playcentric approach involves
player feedback throughout the production process,
which means you’ll be doing lots of prototyping and
playtesting at every stage of your game’s develop-
ment. You can’t be the advocate for the player if you
don’t know what the player is thinking, and playtesting
is the best mechanism by which you can elicit feed-
back and gain insight into your game. I cannot empha-
size this fact enough, and I encourage any designer
to rigorously build into any production schedule the
means to continually isolate and playtest all aspects
of their game as thoroughly as possible.

�Prototypes and Playtesting
in the Industry
In the game industry today, designers o�en skip
the creation of a physical prototype altogether and
jump straight from the concept stage to writing up
the design. The problem with this method is that
the so�ware coding has commenced before any-
one has a true sense for the game mechanics. The
reason this is possible is because many games are
simply variations on standard game mechanics, so
the designers have a good idea of how the game

arises out of the rules as they are inhabited and enacted by players, creating emergent pa�erns of behavior,
sensation, social exchange, and meaning. This shows the necessity of the iterative design process. The deli-
cate interaction of rule and play is something too subtle and too complex to script out in advance, requiring
the improvisational balancing that only testing and prototyping can provide.

In iterative design, there is a blending of designer and user, of creator and player. It is a process of design
through the reinvention of play. Through iterative design, designers create systems and play with them. They
become participants, but they do so in order to critique their creations, to bend them, break them, and
refashion them into something new. And in these procedures of investigation and experimentation, a special
form of discovery takes place. The process of iteration, of design through play, is a way of discovering the
answers to questions you didn’t even know were there. And that makes it a powerful and important method
of design. SiSSYFiGHT 2000 was developed by Marisa Bowe, Ranjit Bhatnagar, Tomas Clarke, Michelle
Golden, Lucas Gonze, Lem Jay Ignacio, Jason Mohr, Daron Murphy, Yoshi Sodeka, Wade Tinney, and Eric
Zimmerman.

22  Chapter 1: The Role of the Game Designer

will work because they’ve played it, or a variation of
it, as another game.

It’s important to remember that the game indus-
try is just that: an industry. Taking risks and spend-
ing a lot of time and money creating new gameplay
mechanics are difficult to reconcile with a bo�om
line. However, the game industry is changing and
growing rapidly, with new platforms that demand
innovative designs. This means designing for differ-
ent types of players outside the traditional gaming
audience. New platforms like VR, AR, smartphones,
tablets, gestural and multitouch interfaces, and
breakout hits like Pokémon Go have proven that
there is demand from new audiences if the right new
kind of gameplay is offered.

While the industry as a whole is extremely
skilled at maintaining steady technological inno-
vation and cultivating core audience demand for
those innovations, the same isn’t true when it
comes to developing original ideas in player expe-
rience. To meet the demands of new players using
game devices in wildly different contexts than a tra-
ditional game audience, we are seeing the need for
breakthroughs in player experience just as surely as
there has always been a need for breakthroughs in
technology to drive the industry forward. But it is
difficult to design an original game if you skip the
physical prototyping process. What happens is that

you are forced to reference existing games in the
design description? This means your game is bound
from the outset to be derivative. Breaking away
from your references becomes even more difficult
as the production takes off. When your team is in
place, with programmers coding and artists crank-
ing out graphics, the idea of going back and chang-
ing the core gameplay becomes very difficult.

That is why a number of prominent game design-
ers have begun to adopt a playcentric approach. Large
companies such as Electronic Arts have created in-
house training in preproduction (see sidebar in
Chapter 6, page 175) originally run by Chief Visual
Officer Glenn Entis. This workshop includes physi-
cal prototyping and playtesting as part of the initial
development stage. Entis runs development teams
through a series of exercises, one of which is com-
ing up with a quick physical prototype. His advice is
make it “fast, cheap, public, and physical. If you don’t
see people on the team arguing,” he says, “you can’t
know if they are sharing ideas. A physical prototype
gets the team talking, interacting.”4

Chris Plummer, an executive producer at
Electronic Arts Los Angeles, says, “Paper proto-
types can be a great tool for low-cost ideation
and playtesting of game features or systems that
would otherwise cost a lot more to develop in
so�ware. It’s much easier to justify spending the

1.10 � USC Games students at work at week-
end game jam

1.9 � Angry Birds Star Wars and Pokémon
Go—unconventional markets and players

Conclusion  23

resources to realize a game in so�ware a�er the game
framework is developed and refined through more
cost-effective means, such as analog prototypes.”5

Smaller companies o�en engage in “game jams,”
events where local independents and students
come together for a weekend to generate proto-
types for new game projects. The Global Game Jam

is an annual worldwide event that brings together
tens of thousands of participants to develop inno-
vative game prototypes. By leveraging their local
community of independent game designers, small
groups and companies are able to jump-start their
new ideas in a collaborative environment.

D��I
As I mentioned earlier, today’s game designers have
the challenge—and opportunity—to produce break-
throughs in player experience as part of their basic
job description. They will have to do this without tak-
ing too many risks in terms of time and money. By
innovation, I mean:

•• Designing games with unique play mechanics—
thinking beyond existing genres of play

•• Appealing to new players—people who have dif-
ferent tastes and skills than hard-core gamers

•• Designing for new platforms such as smart-
phones, tablets, and gestural and multitouch
interfaces

•• Creating games that integrate into daily life, real-
world spaces, and the systems around us

•• Embracing new business models for games such
as free-to-play or subscription

•• Trying to solve difficult problems in game design
such as:

◊◊ The integration of story and gameplay
◊◊ Deeper empathy for characters in games
◊◊ Creating emotionally rich gameplay
◊◊ Discovering the relationships between

games and learning
•• Asking difficult questions about what games are,

what they can be, and what their impact is on us
individually and culturally

The playcentric approach can help foster innova-
tion and give you a solid process within which to explore
these provocative, unusual questions about gameplay
possibilities, to try ideas that might seem fundamen-
tally unsound but could have within them the seed of
a breakthrough idea, and to cra� them until they are
playable. Real innovation seldom comes from the first
spark of an idea; it tends to come from long-term devel-
opment and experimentation. By interacting with play-
ers throughout the design process, experimental ideas
have time to develop and mature.

C
My goal in this book is to help you become a game
designer. I want to give you the skills and tools you’ll
need to take your ideas and cra� them into games
that aren’t mere extensions of games already on the
market. I want to enable you to push the envelope on
game design, and the key to doing this is process. The
approach you will learn here is about internalizing a
playcentric method of design that will make you more

creative and productive, while helping you to avoid
many of the pitfalls that plague game designers.

The following chapters in this first section will lay
out a vocabulary of design and help you to think crit-
ically about the games you play and the games you
want to design. Understanding how games work and
why players play them is the next step to becoming
a game designer.

24  Chapter 1: The Role of the Game Designer

D�P﹕�
C�N
Lead Designer, Riot Games

Christina Norman is an experienced game designer whose
credits include Mass Effect (2007), League of Legends (2009),
Mass Effect 2 (2011) and Mass Effect 3 (2012).

How did you become a game designer?
I would say I became a game designer at age 9. I was playing
Dungeons & Dragons with some kids at school, and our dun-
geon master moved away. I’d already memorized all the rules,
so I was a natural to replace him. This was the starting point
of a nine-year-long D&D campaign, and the moment I became a game designer.

The story of how I became employed as a game designer is, of course, entirely different. That
story starts with…depression. I had a successful career programming e-commerce web sites, but
I felt deeply unfulfilled. I didn’t care about what I was doing, so I asked myself—what do you care
about? What do you really want to do? The answer was: make games.

I had three things going for me: I was a hardcore gamer, I had created several successful
Warcra� 3 mods, and I was a programmer. I applied for a game design job at BioWare and…they
rejected me. I applied again as a programmer and they said, okay! A�er I had been there for a
few years I was able to convince the lead designer to give me a shot at game design. Since then
it’s been all flowers, bunny rabbits, and joy!

On games that have inspired her:
Dungeons & Dragons: This, along with other great pen-and-paper role-playing games, taught me
the fundamentals of system design. It was my unquenchable thirst for more Dungeons & Dragons
that drove me to CRPGs (what we used to call “computer RPGs”).

Nethack (honorable mention to Diablo 2): Nethack is one of the early “roguelike” games. In this
vast procedurally generated world, I endlessly pursued the fabled amulet of Yendor. As I descended
through the seemingly endless dungeon levels, I marveled at the intricate and complex systems and
their many interactions. Years later, Diablo 2 was the first mainstream game I played that captured
much of Nethack’s strengths, improving it with AAA production values and addictive multiplayer.

Baldur’s Gate 2: This game taught me that games can be an exceptional storytelling medium that
really makes you feel. Through my adventures I came to truly care for my party members—I wanted
to help them achieve their goals! On top of all this, BG2 remains a mastery of systems design and in
my opinion is the best realization of D&D in a video game to date.

Designer Perspective: Christina Norman   25

Master of Orion 2 (honorable mention to Civilization): This was the first 4X (explore, expand, exploit,
exterminate) game that completely captivated me. The idea of starting at a single planet, developing the
technology of space flight, and ultimately ruling the entire universe was mind blowing.

Everquest: I didn’t just play Everquest, I was transformed by it. I entered the virtual world of Norath a role
player. I le� it a hardcore raider who would eventually achieve world-first boss kills in World of Warcra�.
More importantly, through Everquest I developed an appreciation for how deep, strong, and real online
social relationships can be.

What is the most exciting development in the recent game industry?
This is an invigorating time to be a game designer. We’re experiencing a renaissance in which small games are
dominating the creative landscape. The rise of mobile gaming, self-publishing, and fresh game models has
created opportunities for small developers to create innovative games that can also be financially success-
ful. League of Legends started as a small game and benefited from these industry dynamics where scrappy
challenges really have a shot!

Disruption rocks!

On her design process:
I don’t build games for myself. It’s easy to build games that you want to play; it’s much harder to truly under-
stand the needs of others. Building games so a diverse audience can enjoy them requires a commitment to
understanding how others enjoy games.

The first thing I do when I’m designing a game, or a system, is listen to the people I’m building it for. I try to
understand what kind of experience will please them. I then relentlessly pursue delivering that experience
without compromise.

Do you use prototypes?
I’m a programmer, so code is my paintbrush. When I want to try an idea out, I code it fast and dirty. From
there it’s test, iterate, test, iterate, test…and when the design works…build it properly. When I do code-
based prototyping, I use whatever tools will let me test ideas the quickest.

I’m also a big fan of building physical prototypes. Sometimes it’s just faster to build something as a card
game, or board game, than to code it.

On a particularly difficult design problem:
Mass Effect was essentially a hardcore RPG dressed as a shooter. Whether you hit enemies or not was
determined by an invisible die roll. This meant that even if you aimed perfectly, you could miss, so guns felt
weak and unreliable.

For Mass Effect 2 we wanted guns to feel accurate, powerful, and reliable. We disabled the to-hit rolls,
but aiming still felt sub-par. This was my unruly introduction to combat design—I learned that making some-
thing work a certain way is different than making it feel great. My team studied the great shooters, learned
from them, and then we polished our guns until they felt great.

26  Chapter 1: The Role of the Game Designer

But it wasn’t that simple. Making firing guns feel great required adjusting the pacing of gameplay, which
required…reinventing pre�y much every system in Mass Effect. By the time we were done, we had an entirely
different game than the first one, but the results were worth it—ME2 is currently the fourth highest-rated
Xbox 360 game of all time on Metacritic.

What are you most proud of in your career?
Reinventing Mass Effect 2’s gameplay required more than design. To achieve that goal, I had to achieve buy-
in from the team (not an easy task for a designer on her first design project). In the end, I succeeded because
I had a strong vision, I communicated it clearly, and I appealed to the team’s collective desire to deliver a
great experience to our players.

On advice to designers:
Play many games. Play them hardcore. If you get into the game industry, you’ll have less time to play games,
and so many insights come from your experience as a player.

Go beyond your own insights. Learn to be a be�er designer by listening to other players. Just watching
someone play a game can teach you a great deal about game design.

Listen to your team. Just because someone’s title doesn’t include the word “designer” doesn’t mean
they don’t have valuable design insights. Some of the best designers I have worked with have producer,
programmer, or QA in their title.

Designer Perspective: Warren Spector   27

D�P﹕�
W�S
Studio Director, OtherSide Entertainment

Warren Spector is a veteran game designer and producer whose credits include Ultima VI (1990), Wing
Commander (1990), Martian Dreams (1991), Underworld (1991), Ultima VII (1993), Wings of Glory (1994), System
Shock (1994), Deus Ex (2000), Deus Ex: Invisible War (2003), Thief: Deadly Shadows (2004), Disney Epic
Mickey (2010), and Disney Epic Mickey 2 (2012).

On getting into the game industry:
I started out, like most folks, as a gamer, back in the day. Back in 1983, I made my hobby my profession,
starting out as an editor at Steve Jackson Games, a small board game company in Austin, Texas. There, I
worked on TOON: The Cartoon Roleplaying Game, GURPS, several Car Wars, Ogre, and Illuminati games
and learned a ton about game design from people like Steve Jackson, Allen Varney, Sco� Haring, and oth-
ers. In 1987, I was lured away by TSR, makers of Dungeons & Dragons and other fine RPGs and board games.
1989 saw me homesick for Austin, Texas, and feeling like paper gaming was a business/art form that had
pre�y much plateaued. I was playing a lot of early computer and video games at the time, and when the
opportunity to work for Origin came up, I jumped at it. I started out there as an associate producer, working
with Richard Garrio� and Chris Roberts before moving up to full producer. I spent seven years with Origin,
shipping about a dozen titles and moving up from associate producer to producer to executive producer.

On game influences:
There have probably been dozens of games that have influenced me, but here are a few of the biggies:

•• Ultima IV: This is Richard Garrio�’s masterpiece. It proved to me (and a lot of other people) that giv-
ing players power to make choices enhanced the gameplay experience. And a�aching consequences
to those choices made the experience even more powerful. This was the game that showed me that
games could be about more than killing things or solving goofy puzzles. It was also the first game I
ever played that made me feel like I was engaged in a dialogue with the game’s creator. And that’s
something I’ve striven to achieve ever since.

•• Super Mario 64: I was stunned at how much gameplay Miyamoto and the Mario team managed to
squeeze into this game. And it’s all done through a control/interface scheme that’s so simple that, as
a developer, it shames me. Mario can do maybe ten things, I think, and yet the player never feels con-
strained—you feel empowered and liberated, encouraged to explore, plan, experiment, fail, and try
again, without feeling frustrated. You have to be inspired by the combination of simplicity and depth.

•• Star Raiders: This was the first game that made me believe games were more than just a fad or pass-
ing fancy, for me and for, well, humanity at large. “Oh, man,” I thought, “we can send people places
they’ll never be able to go in real life.” That’s not just kid stuff—that’s change-the-world stuff. There’s
an old saying about not judging someone until you’ve walked a mile in their shoes, you know? Well,

28  Chapter 1: The Role of the Game Designer

games are like an experiential shoe store for all mankind. We can allow you to walk in the shoes of
anyone we can imagine. How powerful is that?

•• Ico: Ico impressed me because it proved to me how powerfully we can affect players on an emotional level.
And I’m not just talking about excitement or fear, the stuff we usually traffic in. Ico, through some stellar
animation, graphics, sound, and story elements, explores questions of friendship, loyalty, dread, tension,
and exhilaration. The power of a virtual touch—of the player holding the hand of a character he’s charged
to protect, even though she seems weak and moves with almost maddening slowness—the power of that
touch blew me away. I have to find a way to get at some of that power in my own work. Interestingly, some
recent games, like Last of Us and The Walking Dead, have exploited the human need to make contact with
and protect another. Clearly, this is an idea games can exploit exceptionally well—an idea that allows us to
move people, emotionally, in ways many nongamers and even some gamers thought impossible.

•• Suikoden: This li�le PlayStation role-playing game showed me new ways of dealing with conversation.
I had never before experienced Suikoden’s brand of simple, straightforward, binary-choice approach—
li�le things like “Do you fight your father or not? Y/N” or “Do you leave your best friend to almost cer-
tain death so you can escape and complete your critically important quest? Y/N” will blow you away! In
addition, the game featured two other critical systems: a castle-building mechanic and a related player-
controlled ally system. The castle-building bit showed me the power of allowing players to leave a per-
sonal mark on the world—the narcissistic aspect of game playing. The ally system, which affected what
information you got before embarking on quests, as well as the forces/abilities available to you in mass
ba�les, revealed some of the power of allowing each player to author his or her own unique experience.
It is a terrific game that has a lot to teach even the most experienced RPG designers in the business.

•• One recent game that inspired me, though perhaps not in the way I expected or the creators of the
game intended, was The Walking Dead. Playing that game, I was drawn into a narrative, into an experi-
ence, that felt more emotionally compelling than maybe any other game I’ve played. As an experience,
the game was magnificent. As a game? I’m not so sure. I think The Walking Dead worked as well as it
did because it was unabashedly cinematic—the creators of the game knew exactly where every player
would be at all times, what each player would do, exactly how they would do it…In a sense, that meant
The Walking Dead was “just” a movie—but a movie that gives an incredibly convincing illusion of inter-
activity. As a player, I was charmed by it. As a developer, I was aghast that anyone would make a game
where developers would never be surprised by anything players did and where no player would ever
do anything the creators didn’t intend, plan for, and implement. I’m still working through the contradic-
tion inherent in the idea of a game I loved as a player but felt disappointed in as a developer. Any game
that is as enjoyable and, albeit inadvertently, thought provoking is worth including on a list of influences!

On free-form gameplay:
I guess I’m pre�y proud of the fact that free-form gameplay, player-authored experiences, and the like
are finally becoming not just common but almost expected these days. From the “middle” Ultimas (4–6), to
Underworld, to System Shock, to Thief, to Deus Ex, there’s been this small cadre of us arguing, through our
work, in favor of less linear, designer-centric games, and, thanks to the efforts of folks at Origin, Looking Glass
Studios, Ion Storm, Rockstar/DMA, Bioware, Lionhead, Bethesda, and others, people are finally beginning to
take notice. And it isn’t just the hardcore gamers—the mass market is waking up, too. That’s pre�y cool.

End Notes  29

F�R
Kelley, Tom. The Art of Innovation: Lessons in

Creativity from IDEO, America’s Leading Design
Firm. New York: Random House, 2001.

Laramée, François Dominic, ed. Game Design
Perspectives. Hingham: Charles River Media,
2002.

Moggridge, Bill. Designing Interactions.
Cambridge: The MIT Press, 2007.

The Imagineers. The Imagineering Way. New
York: Disney Editions, 2003.

Tinsman, Brian. The Game Inventor’s Guidebook.
Iola: KP Books, 2003.

E�N
	1.	 Phipps, Keith, “Will Wright Interview by Keith

Phipps” A.V. Club. February 2, 2005. h�ps://www.
avclub.com/will-wright-1798208435

	2.	 Sheff, David. Game Over: How Nintendo
Conquered the World. New York: Vintage
Books, 1994, p. 51.

	3.	 Hermida, Alfred. “Katamari Creator Dreams of
Playground.” BBC News.com November 2005. h�p://
news.bbc.co.uk/2/hi/technology/4392964.stm

	4.	 Entis, Glenn. “Pre-Production Workshop.” EA@USC
Lecture Series. March 23, 2005.

	5.	 Plummer, Chris. E-mail interview, May 2007.

I’m hugely proud of having had the privilege of working alongside some amazingly talented people. It’s
standard practice in all media to give one person credit for the creation of a product, but that’s nonsense.
Nowhere is it more nonsensical than in games. Game development is the most intensely collaborative
endeavor I can imagine. It’s been an honor to work with Richard Garrio�, Paul Neurath, Doug Church,
Harvey Smith, Paul Weaver, and many others (who will now be offended that I didn’t single them out here!).
I know I’ve learned a lot from all of them and hope I’ve taught a li�le bit in return.

Advice to designers:
Learn to program. You don’t have to be an ace, but you should know the basics. In addition to a solid tech-
nical foundation, get as broad-based an education as you can. As a designer, you never know what you’re
going to need to know—behavioral psychology will help you immensely, as will architecture, economics, and
history. Get some art/graphics experience, if you can, so you can speak intelligently with artists even if you
lack the skills to become one yourself. Do whatever it takes to become an effective communicator in writ-
ten and verbal modes. And most importantly, make games. Get hold of one of the many free game engines
out there and build things. Get yourself on a mods team and build some maps, some missions, anything you
can. Heck, make something amazing in Minecra�! You can do all of this on your own or at one of the many
institutions of higher learning now (finally!) offering courses, even degrees, in game development and game
studies. It doesn’t really ma�er how you get your training and gain some experience—of life as much as game
development—just make sure you get it. Oh, and make sure you really, really, really want to make games for
a living. It’s gruelingly hard work, with long hours and wrecked relationships to prove it. There are a lot of
people who want the same job you do. Don’t go into it unless you’re absolutely certain it’s the career for you.
There’s no room here for dile�antes!

https://www.avclub.com/will-wright-1798208435
https://www.avclub.com/will-wright-1798208435
http://news.bbc.co.uk/2/hi/technology/4392964.stm
http://news.bbc.co.uk/2/hi/technology/4392964.stm

http://taylorandfrancis.com

THE BASICS OF ART

#

This chapter is excerpted from

3D Game Textures

by Luke Ahearn

© 2016 Taylor & Francis Group. All rights reserved.

2

Learn more

https://www.crcpress.com/3D-Game-Textures-Create-Professional-Game-Art-Using-Photoshop/Ahearn/p/book/9781138920064?utm_source=shared_link&utm_medium=post&utm_campaign=B190204554
https://www.crcpress.com/3D-Game-Textures-Create-Professional-Game-Art-Using-Photoshop/Ahearn/p/book/9781138920064?utm_source=shared_link&utm_medium=post&utm_campaign=B190204554

CHAPTER 1

The Basics of Art

Art is born of the observation and investigation of nature.

—Cicero
Roman author, orator, and politician, 106 BC–43 BC

Introduction
Creating art for computer games requires both artistic and technical skills.
We will look at both but first we will look at the very basics of art. The goal of
this chapter isn’t to turn you into an artist, but it will help you create better
textures to understand these fundamentals. If you have any art training, this
may be material you will want to skim over. If you don’t, hopefully it will help
point you in the right direction to learn what you need to in order to become
a great game artist.

There are a few basic aspects of visual art that are simple to understand
but can take years to master. And even though teaching you traditional
fine art skills is beyond the scope of this book, it is critical that you have an
understanding of these basic aspects of visual art so that you can create
game textures. Fortunately, these basic aspects of art are easy to present in

1

Y202224.indb 1 4/4/16 10:46 AM

book form and you can learn the vocabulary of an artist without difficulty. By
studying these basics of art, you will learn to see the world as an artist does
and to understand what you see and then be better able to create a texture
set for a game world.

The basic aspects of visual art that we will focus on are as follows:

•	 Shape and form
•	 Light and shadow
•	 Texture
•	 Color
•	 Perspective

Learning to observe the world around you, understand what you are seeing,
and then explain it verbally is what an artist does. Communicating with other
artists and team members is critical in the development process. Just being
able to make a decent texture isn’t enough; you need to be able to create the
texture that is needed and that need will be communicated to you through
the nomenclature of the artist.

Technology is, of course, critical to the larger picture of game textures, but
the actual basics of art are where great textures begin. It is way too common
for a book or class to start with a tutorial on tiling in Photoshop or even game
engine technology and that is skipping what the game artist really needs, a
fundamental understanding of the visual world. It is very common for people
to know this stuff, but it is equally as common for a person to have absolutely
no understanding of any of it.

The skills that are the most important for the creation of game textures
are the ability to understand what you are seeing in the real world and the
ability to recreate it in the computer. Often a texture artist is required to
break a scene down to its core materials and build a texture set based on
those materials, so learning this skill is essential. Although you don’t need to
have an advanced degree in art to create great textures, let’s face it: Almost
anyone can learn what buttons to click in Photoshop, but the person who
understands and skillfully applies the basics of art can make a texture that
stands out above the rest.

There are many types of art and aspects of visual art that you should further
explore to develop as a game artist. The following are some of the things you
can study and/or practice:

•	 Figure drawing
•	 Still life
•	 Calligraphy
•	 Photography
•	 Painting (oil, water color, etc.)
•	 Lighting (for film, still photography, the stage, or computer graphics)
•	 Color theory and application
•	 Sculpture

2

3D Game Textures: Create Professional Game Art Using Photoshop, Fourth Edition

Y202224.indb 2 4/4/16 10:46 AM

•	 Drafting and architectural rendering
•	 Anatomy, which usually starts with stick figures and adds the skeleton,

muscles, and then skin
•	 Set design
•	 Technical illustration

It is even worth the time to study other areas of interest beyond art, such
as the sciences, particularly the behavior of the physical world. Almost
all commercial game engines process light in real time and don’t rely on
painting it into the texture. There are still many situations where that skill
is needed so we will look at working with textures for both methods. The
more you understand and are able to reproduce effects such as reflection,
refraction, blowing smoke, and so on, the more success you will find as a
game artist. We now have technologies that reproduce the real world to a
much greater extent than ever before, but it still takes an artist to create the
input and adjust the output for these effects to look their best.

The areas of study that will help you deal with real-world behaviors are
endless. You can start by simply observing the world. Watch how water drips
or flows, the variations of light and shadow on different surfaces at different
times of the day, how a tree grows from the ground—straight like a young
pine or flared at the base like an old oak. Study a crack up close and you
will begin to see many interesting details. Look at any object, photograph
it if possible, and study the surface. An old dumpster was new once. Try to
determine what made it look the way it does today. What may have dented
the various parts, a car hitting it or the mechanism that lifts it to empty
it? Where is it rusted and why? Was it repainted, vandalized, damaged, or
repaired? Is there dirt splattered and clumped on, running down the sides?
Where is it, behind a restaurant, a chemical factory, or a construction site?

An excellent book to inspire this type of activity is Digital Texturing and
Painting, by Owen Demers (New Riders, 2001).

You can also take tours of museums, go on architectural tours or nature
walks, join a photography club or a figure-drawing class—there is no end
to the classes, clubs, disciplines, and other situations that will open up your
mind to new inspirations and teach you new tools and techniques for texture
creation. And, of course, playing games, watching movies, and reading
graphic novels are basic food to the game artist.

There are many elements of traditional art, but we will narrow our focus to
those elements that are most pertinent to texture creation. Let’s start with
shape and form.

Shape (2D) and Form (3D)
A shape (height and width) is simply a two-dimensional (flat) outline of a
form. Circles, squares, rectangles, and triangles are all examples of shape.
Shape is what we first use to draw a picture before we understand such

3

The Basics of Art

Y202224.indb 3 4/4/16 10:46 AM

concepts as light, shadow, and depth. As children we draw what we see in a
crude 2D way. Look at the drawings of very young children and you will see
that they are almost always composed of pure basic shapes: triangular roof,
square door, circular sun. Even as adults, when we understand shadows and
perspective, we have trouble drawing what we see before us and instead rely
on a whole series of mental notes and assumptions as to what we think we
are seeing. There are exercises to help develop the ability to draw what we
actually see. Most notably, the book The New Drawing on the Right Side of the
Brain, by Betty Edwards (Tarcher, 1999), offers many such exercises. One of
the most famous of these involves the drawing of a human face from a photo.
After you have performed this exercise, you turn the photo upside down
and draw it again. The upside-down results are often far better than the
right-side-up ones, even on first try. This is because once you turn the image
upside down, your brain is no longer able to make any mental assumptions
about what you think you are seeing; you can see only what’s really there.
Your brain hasn’t yet developed a set of rules and assumptions about the
uncommon sight of an upside-down human face.

One of the first skills that you can practice as an artist is trying to see the shapes
that make up the objects that surround you. Figure 1.1 has some examples
of this shape training, ranging from the simple to the complex. This is a very
important skill to acquire. As a texture artist, you will often need to see an
object’s fundamental shape amid all the clutter and confusion in a scene so
that you can create the 2D art that goes over the 3D objects of the world.

4

3D Game Textures: Create Professional Game Art Using Photoshop, Fourth Edition

FIG  1.1  Here are some examples of shapes that compose everyday objects. These shapes range from simple to complex.

Y202224.indb 4 4/4/16 10:46 AM

Form is three-dimensional (height, width, and depth) and includes simple
objects like spheres, cubes, and pyramids. See Figure 1.2 for examples and
visual comparisons. You will see later that as a texture artist, you are creating
art on flat shapes (essentially squares and rectangles) that are later placed
on the surfaces of forms. An example is shown in Figure 1.3, where a cube is
turned into a crate (a common prop in many computer games). When a shape
is cut into a base material in Photoshop and some highlights and shadows
are added, the illusion of form is created. A texture can be created rather
quickly using this method. See Figure 1.4 for a very simple example of a space
door created using an image of rust, some basic shapes, and some standard
Photoshop Layer Effects.

Of course, mapping those textures to more complex shapes like weapons,
vehicles, and characters gets more complex, and the textures themselves

5

The Basics of Art

FIG  1.2  Here are examples of shapes and forms. Notice how it is shadow that turns a circle into a sphere.

Geometry/3D Model

Image/2D Texture

Texture Applied to 3D Model

FIG  1.3  A game texture is basically a 2D image applied, or mapped, to a 3D shape to add visual detail. In this
example, a cube is turned into a crate using texture. A more complex 3D shape makes a more interesting crate
using the same 2D image.

Y202224.indb 5 4/4/16 10:46 AM

reflect this complexity. Paradoxically, as the speed, quality, and complexity
of game technology increase, artists are actually producing more simplified
textures in many cases. The complexity comes in the understanding and
implementation of the technology. This book will gradually introduce this
complexity so you won’t be overwhelmed by it.

As with shapes, you can practice looking for the forms that make up the
objects around you. In Figure 1.5 you can see some examples of this concept.

6

3D Game Textures: Create Professional Game Art Using Photoshop, Fourth Edition

FIG  1.4  Here is an example of how shapes can be cut into an image and with some simple layer effects can be
turned into a texture in Photoshop.

FIG  1.5  Here are some examples of the forms that make up the objects around you.

Y202224.indb 6 4/4/16 10:46 AM

Light and Shadow
Of all the topics in traditional art, light and shadow are arguably the most
important due to their difficulty to master and importance to the final work.
Light and shadow give depth to and—as a result—define what we see. At
their simplest, light and shadow are easy to see and understand. Most of us
are familiar with shadow—our own shadow cast by the sun, making animal
silhouettes with our hands on a wall, or a single light source shining on a
sphere and the round shadow that it casts. That’s where this book begins.
Light and shadow quickly get more complicated, so the examples in this
book will get more complex as well. The book starts by discussing the ability
to see and analyze light and shadow in this chapter; moves up to creating
and tweaking light and shadow in Photoshop using Layer Styles, for the most
part; and finally looks at some basic hand tweaking of light and shadow. If
you want to master the ability to hand-paint light and shadow on complex
and organic surfaces, you are advised to take traditional art classes in
illustration, sketching, and painting.

We all know that the absence of light is darkness, and in total darkness we can
see nothing at all, but the presence of too much light will also make it difficult
to see. Too much light blows away shadow, removes depth, and desaturates
color. In the previous section, we looked at how shape and form differ. We see
that difference primarily as light and shadow, as in the example of the circle
and a sphere. But even if the sphere were lit evenly with no shadows and
looked just like the circle, the difference would become apparent when the
object was rotated. The sphere would always look round if rotated, whereas
once you began to rotate the circle it would begin to look like an oval until
it eventually disappeared when completely sideways. In Figure 1.4, in which
a shape was cut into an image of rusted metal and made to look like a metal
space door using Photoshop Layer Effects, the highlights and shadows were
faked using the various tools and their settings. In Figure 1.6 you can see the

7

The Basics of Art

FIG  1.6  Here is the same door texture from the previous section. Notice the complete lack of depth as we look at it from angles other than straight on. The
illusion of depth is shattered.

Y202224.indb 7 4/4/16 10:46 AM

same door texture rotated from front to side. Notice the complete lack of
depth in the image on the far right. The illusion is shattered.

Understanding light and shadow is very important in the process of creating
quality textures. We will go into more depth on this topic as we work
through this book. One of the main reasons for dwelling on the topic is the
importance of light and shadow visually, but in addition, you will see that
many necessary decisions are based on whether light and shadow should be
represented using texture, geometry, or technology. To make this decision
intelligently in serious game production involves the input and expertise
of many people. Although what looks best is ideally the first priority, what
runs best on the target computer is usually what the decision boils down
to. So keep in mind that in game development you don’t want to make any
assumptions about light and shadow—instead, ask questions.

This book covers different scenarios of how light and shadow may be
handled in a game. It can be challenging to make shadows look good in
any one of the situations. Too little shadow and you lack depth; too much
and the texture starts to look flat. Making shadows too long or intense is an
easy mistake. Unless the game level specifically calls for that on some rare
occasion, don’t do it. Technology sometimes handles the highlights and
shadows. This feature is challenging because it is a new way of thinking
that baffles many people who are unfamiliar with computer graphics. It can
also be a bit overwhelming because you go from creating one texture for
a surface to creating three or more textures that all work together on one
surface. Naming and storing those textures can get confusing if you let the
process get away from you.

Overall, you want your textures to be as versatile as possible, and to a great
extent, that includes the ability to use those textures under various lighting
conditions. See Figure 1.7 for an example of a texture in which the shadows
and highlights have been improperly implemented and another one that
has been correctly created. For this reason we will purposely use highlights
and shadows to a minimal amount. You will find that if your texture needs
more depth than a modest amount of highlight and/or shadow give you,
you most likely need to create geometry or use a shader—or consider
removing the source of the shadow! If there is no need for a large electrical
box on a wall, for example, don’t paint it in if it draws attention to itself and
looks flat. If there is a need for an object and you are creating deep and
harsh shadows because of it, you might need to create the geometry for the
protruding element.

You will find that as game development technology accelerates, things like
pipes, doorknobs, and ledges will be easily created with the larger polygon
budgets or by using the advanced shaders at our disposal. Many texture
surface properties are no longer painted on. Reflections, specular highlights,
bump mapping, and other aspects of highlight and shadow are now
processed in real time.

8

3D Game Textures: Create Professional Game Art Using Photoshop, Fourth Edition

Y202224.indb 8 4/4/16 10:46 AM

The rest of this book takes various approaches to light and shadow using
Photoshop’s Layer Effects to automate this process and other tools to hand-
paint highlights and shadows. One of the main benefits of creating your own
highlights and shadows in your textures is that you can control them and
make them more interesting, as well as consistent. Nothing is worse than a
texture with shadows from conflicting light sources: harsh, short shadows on
some elements of the texture and longer, more diffuse shadows on others.
See Figure 1.8 for an example. The human eye can detect these types of
errors even if the human seeing the image can’t quite understand why it
looks wrong. One of the artist’s greatest abilities is not only being able to
create art but also being able to consciously know and verbalize what he is
seeing. In Figure 1.9, you can see the various types of shadows created as

9

The Basics of Art

FIG  1.7  The crate on the left has conflicting light sources. The shadow from the edge of the crate is coming up
from the bottom, is too dark, is too long, and even has a gap in it. The highlights on the edges are in conflict with
the shadow cast on the inner panel of the crate, and they are too hot, or bright. The crate on the right has a more
subtle, low-contrast, and diffuse highlight-and-shadow scheme and will work better in more diverse situations.

Y202224.indb 9 4/4/16 10:46 AM

10

3D Game Textures: Create Professional Game Art Using Photoshop, Fourth Edition

FIG  1.8  Here is a really bad texture created from two sources. Notice the difference in the shadows and highlights.
The human eye can detect these errors, even if the human seeing it can’t understand why the image looks wrong.

FIG  1.9  With one light source and a simple object, you can see the range of shadows we can create. Each
shadow tells us information about the object and the light source, such as location, intensity, and so on.

Y202224.indb 10 4/4/16 10:46 AM

the light source changes. This is a simple demonstration. If you ever have the
opportunity to light a 3D scene or movie set, you will discover that the range
of variables for light and shadow can be quite large.

Highlights also tell us a good bit about the light source as well as the
object itself. In Figure 1.10, you can see another simple illustration of how
different materials will have different highlight patterns and intensities.
These materials lack any texture or color and simply show the highlights and
shadows created on the surface by one consistent light source.

For a more advanced and in-depth discussion on the subject of light and
shadow for 3D scenes, I recommend Essential CG Lighting Techniques with
3ds Max, by Darren Brooker (Focal, 2006).

11

The Basics of Art

FIG  1.10  With one light source and a simple object with various highlights on it, you can see that the object
appears to be created of various materials. Keep in mind that what you are seeing is only highlight and shadow.
How much does only this aspect of an image tell you about the material?

Y202224.indb 11 4/4/16 10:46 AM

Texture
In the bulk of this book, as in the game industry, we use the term texture to
refer to a 2D static image. What we refer to as textures in this book are also
sometimes called materials or even tile sets (from older games), but we will
stick to the term texture. The one exception is that in this section we talk about
the word texture as it is used in traditional art: painting, sculpture, and so on.
A side note on vocabulary: Keep in mind that vocabulary is very important
and can be a confusing aspect of working in the game industry. There is
much room for miscommunication. Different words can often mean the same
thing, and the same words can often mean many different things. Acronyms
can be especially confusing: RAM, POV, MMO, and RPG all mean different
things in different industries. POV means point of view in the game industry
but personally owned vehicle in the government sector, and it also stands for
persistence of vision. So to clarify, the term texture—usually meaning a 2D
image applied to a polygon (the face of a 3D object)—in this section of this
chapter refers to an aspect of an image and not the image itself. We draw this
distinction for the following conversation on traditional art.

In traditional art, there are two types of texture: tactile and visual. Tactile
texture is a term used when you are able to actually touch the physical
texture of the art or object. Smooth and cold (marble, polished metal, glass)
is as much a texture as coarse and rough. In art this term applies to sculptures
and the like, but many paintings have thick and very pronounced brush or
palette knife strokes. Vincent van Gogh was famous for this technique. Some
painters even add materials such as sand to their paint to bring more physical
or tactile texture to their work.

Visual texture is the illusion of what a surface’s texture might feel like if we
could touch it. Visual texture is composed of fine highlights and shadows. As
computer game texture artists, we deal solely with this aspect of texture. So,
for example, an image on your monitor might look like rough stone, smooth
metal, or even a beautiful woman … and if you try to kiss that beautiful
woman, she is still just a monitor. Not that I ever tried that, mind you.

There are many ways to convey texture in a two-dimensional piece of art.
In computer games we are combining 2D and 3D elements and must often
decide which to use. With 2D we are almost always forced to use strictly
2D imagery for fine visual texture. And though the faster processors, larger
quantities of RAM, and the latest crop of 3D graphic cards allow us to use
larger and more detailed textures and more geometry, a great deal of
visual texture is still static—noticeably so, to a trained artist. This limitation
is starting to melt away as complex shader systems are coming into the
mainstream of real-time games. The real-time processing of bump maps,
specular highlights, and a long list of other, more complex effects add to our
game worlds a depth of realism not even dreamed of in the recent past. This
book will teach you both the current method of building texture sets and the
increasingly common method of building material sets that use textures and

12

3D Game Textures: Create Professional Game Art Using Photoshop, Fourth Edition

Y202224.indb 12 4/4/16 10:46 AM

shader effects together. I will discuss this more at length later in the book, but
for now you can see some visual examples of these effects. In Figure 1.11 you
can see how in the 2D strip the object rotates but the effects stay static on
the surface, whereas on the 3D strip the object rotates and the effect moves
realistically across the surface.

The game artist’s job is often to consider what tools and techniques we have
at our disposal and determine which one will best accomplish the job. We
must often make a trade-off between what looks good and what runs well.
As you begin to paint textures, you will find that some of the techniques of
traditional art don’t work in the context of game texturing. As traditional
artists, we usually do a painting that represents one static viewpoint, and
we can paint into it strong light sources and a great deal of depth, but that

13

The Basics of Art

Windows have a re�ection of the sky and
that re�ection moves as the player does

Windows with painted textures stay the same
no matter where the player goes

FIG  1.11  Visual texture is composed of fine highlights and shadows. A shader allows for the real-time processing
of visual texture, among other effects, and adds much more realism to a scene as the surface reacts with the
world around it. In this example I used a specular map. These effects are best seen in 3D, but you can see here
that the windows in the building on the top row have a reflection of the sky in them and that reflection moves as
the players do. The windows in the building on the lower row are painted textures and stay the same no matter
where the player walks. The bottom two rows are close-ups to help you see the effect. If you pick one window in
the close-up images and look closely, you will see that the cloud reflections are in different places in each frame.

Y202224.indb 13 4/4/16 10:46 AM

amount of depth representation goes beyond tactile texture and becomes
faked geometry and looks flat in a dynamic, real-time 3D world. As mentioned
earlier in this chapter, this approach will not work in a 3D game in which a
player can move about and examine the texture. Once again, we must choose
what to represent using a static 2D image, what can be processed in real
time using a shader, and what must be represented using actual geometry.
There are many solutions for this problem; among them are restricting the
players’ ability to move around the texture, removing the element of overt
depth representation, or adding actual geometry for the parts of the texture
represented by the overt depth representation (see Figure 1.12).

14

3D Game Textures: Create Professional Game Art Using Photoshop, Fourth Edition

FIG  1.12  There are several possibilities in dealing with overt depth representation. Upper left: The pipes
are painted into the texture and totally lack any depth; notice how they dead-end into the floor. Upper right:
Restricting the players’ ability to move around the texture can alleviate some of the problem. Lower left: Adding
actual geometry, if possible, for the parts of the texture that cause the overt depth is the best solution (this
method uses less texture memory but more polygons). Finally, lower right: Adding the actual geometry into the
recess is an option that looks pretty interesting and actually allows for a reduction of geometry. The removal of
polygons from the backsides of the pipes more than offsets the added faces of the recess.

Y202224.indb 14 4/4/16 10:46 AM

Color
We all know what color is in an everyday fashion: “Get me those pliers. No,
the ones with black handles.” “I said to paint the house green. I didn’t mean
neon green!” That’s all fine for civilian discussions of color, but when you
begin to speak with artists about color, you need to learn to speak of color
intelligently, and that takes a little more education and some practice. You
will also learn to choose and combine colors, too. In games, as in movies,
interior design, and other visual disciplines, color is very important. Color tells
us much about the world and situation we are in.

At one game company we developed a massive multiplayer game that
started in a small town—saturated green grass, blue water, butterflies—you
get the picture; this was a nice, safe place. As you moved away from town, the
colors darkened and lost saturation. The grass went from a bright green to a
less-saturated brownish-green. There were other visual clues to the change
as well. Most people can look at grass and tell whether it is healthy, dying,
kept up, or growing wild. Away from town, the grass was long and clumpy,
dying, and growing over the path. But even before we changed any other
aspect of the game—still using the same grass texture from town that was
well trimmed—we simply lowered the saturation of the colors on the fly and
you could feel the life drain from the world as you walked away from town. As
you create textures, you will probably have some form of direction on color
choice—or maybe not. You might need to know what colors to choose to
convey what is presented in the design document and what colors will work
well together.

This section lays out a simple introduction to the vocabulary of color, color
mixing (on the computer), and color choices and their commonly accepted
meanings. I decided to skip the complex science of color and stick to the
practical and immediately useful aspects of color. Color can get very complex
and esoteric, but you would benefit from taking your education further and
learning how color works on a scientific basis. Although this chapter will be
a strong starting point, you will eventually move on from working with only
the colors contained in the texture that you are creating to determining how
those colors interact with other elements in the world, such as lighting. To
start with, however, a game texture artist needs the ability to communicate,
create, and choose colors.

First, let’s discuss the way in which we discuss color. There are many color
models, or ways of looking at and communicating color verbally. There are
models that concern printing, physics, pigment, and light. They each have
their own vocabulary, concepts, and tools for breaking out color. As digital
artists, we use the models that describe light, because we are working with
colored pixels that emit light. A little later we will take a closer look at those
color systems from the standpoint of color mixing, but for now we will look at
the vocabulary of color. In game development you will almost always use the
red-green-blue (RGB) color model to mix color and the hue, saturation, and

15

The Basics of Art

Y202224.indb 15 4/4/16 10:46 AM

brightness (HSB) color model (both explained next) to discuss color. You will
see that Photoshop allows for the numeric input and visual selection of color
in various ways. When you discuss color choices and changes and then go to
enact them, you are often translating between two or more models. Don’t
worry; this is not difficult, and most people don’t even realize that they are
doing it.

First, we will look at the HSB model, since this is the most common way
for digital artists to communicate concerning color. In Figure 1.13 you can
see examples of these aspects of color. These three properties of color
are the main aspects of color that we need to be concerned with when
discussing color:

•	 Hue is the name of the color (red, yellow, green).
•	 Saturation (or chroma) is the strength or purity of the color.
•	 Brightness is the lightness or darkness of the color.

Hue

Most people use the word color when they really mean hue. Although there
are many, many colors, there are far fewer hues. Variations of saturation
and brightness create the nearly unlimited colors we see in the world. For
example, scarlet, maroon, pink, and crimson are all colors, but the base hue
is red.

Learning about color and its various properties is best done through visual
examples. The most often used method is the color wheel, developed by
Johannes Itten. We will look at the color wheel a little later. In Photoshop

16

3D Game Textures: Create Professional Game Art Using Photoshop, Fourth Edition

Sa
tu

ra
tio

ns

BrightnessHue

FIG  1.13  In this image you can see a representation of HSB.

Y202224.indb 16 4/4/16 10:46 AM

you will recognize the Color Picker, which offers various methods for
choosing and controlling color, both numerically and visually. The Color
Picker has various ways to choose color, but the most commonly used is RGB
(Figure 1.14).

Saturation

Saturation quite simply is the amount of white in a color. In Figure 1.15
you can see the saturation of a color being decreased as white is added. If
you have access to a software package like Photoshop and open the Color
Picker, you can slide the picker from the pure hue to a less saturated hue and
watch the saturation numbers in the HSB slots go down as the color gets
less saturated. Notice how the brightness doesn’t change unless you start
dragging down and adding black to the color. Also, you might want to look
down at the RGB numbers and notice how the red in RGB doesn’t change, but
the green and blue do.

17

The Basics of Art

FIG  1.14  Here are Color Pickers from various applications.

100% Saturation 0% Saturation

FIG  1.15  The saturation of the color red at 100%, decreasing to 0% by adding white.

Y202224.indb 17 4/4/16 10:46 AM

Brightness

Brightness is the amount of black in a color. In Figure 1.16 you can see the
brightness of a color being decreased. As in the previous discussion of
saturation, you can open the Color Picker in Photoshop and this time, instead
of decreasing the saturation, you can decrease the brightness by dragging
down. You can look at the HSB and the RGB slots and see the brightness
numbers decreasing. Also notice that this time in the RGB slots the red
numbers decrease, but the blue and green are already at zero and stay there.

Like most other aspects of color, brightness is affected by other factors.
What colors are next to each other? What are the properties of the lights in
the world? Another job of the texture artist is making sure that the textures
in the world are consistent. That involves balancing the hue, saturation,
and brightness of the color, in most cases. Figure 1.17 depicts an example
of a texture that might have looked okay in Photoshop but that needed to

18

3D Game Textures: Create Professional Game Art Using Photoshop, Fourth Edition

100% Brightness 0% Brightness

FIG  1.16  The brightness of the color red at 100%, decreasing to 0% by adding black.

Patch of Exposed Stone in the Concrete

Patch of Exposed Stone Removed

FIG  1.17  Here is an example of a texture that might have looked okay in Photoshop but that needed to be
corrected to fit in the scene correctly. This is a subtle example. Notice the patch of exposed stone in the concrete
on the building that repeats?

Y202224.indb 18 4/4/16 10:46 AM

be corrected to fit the scene. You can see that a great deal of contrast and
intensity of color makes tiling the image a greater challenge.

Color Systems: Additive and Subtractive

There are two types of color systems: additive and subtractive. Subtractive
color is the physical mixing of paints, or pigments, to create a color. It is
called subtractive because light waves are absorbed (or subtracted from
the spectrum) by the paint and only the reflected waves are seen. A red
pigment, therefore, is reflecting only red light and absorbing all the others.
In the subtractive system, you get black by mixing all the colors together—
theoretically. It is a challenge to mix pigments that result in a true black or
a vibrant color. That is one of the reasons art supply stores have so many
choices when it comes to paint. One of our advantages of working in the
additive system is that we can get consistent and vibrant results with light.
We won’t dwell on the subtractive system since we won’t be using it.

In the additive system, light is added together (as it is on a computer screen)
to create a color, so naturally we deal with the additive system as computer
artists because we are working with light. In Figure 1.18 you can see how
the additive system works. I simply went into 3ds Max and created three
spotlights that were pure red, green, and blue and created my own additive
color wheel, or a visual representation of how the colors interact. Black is the
absence of light (the area outside the spotlights), and white is all light (the
center area where all three lights overlap each other): The combination of
red, green, and blue is the additive system. If you look at the Color Picker in
Photoshop (Figure 1.19), you will see a vertical rectangle of color graduating
from red through the colors and back to red. This allows you to select a hue
and use the Color Picker Palette to change the value and intensity.

19

The Basics of Art

Green

Cyan

White

Blue

Magenta

YellowRed

Black

FIG  1.18  The additive system works by adding lights. Black is the absence of light (the area outside the
spotlights), and white is all light (the center area where all three lights overlap each other): The combination of
red, green, and blue is the additive system.

Y202224.indb 19 4/4/16 10:46 AM

Primary Colors
The three primary colors in the additive color system are red, green, and blue
(RGB). They are referred to as primary colors because you can mix them and
make all the other colors, but you can’t create the primary colors by mixing
any other color. Many projection televisions use an additive system where
you can see the red, green, and blue lens that project these three colors to
create the image you see.

Secondary Colors
The secondary colors are yellow, magenta, and cyan. When you mix equal
amounts of two primary colors together, you get a secondary color. You can
see that these colors are located between the primary colors on the color
wheel and on the Photoshop Color Picker vertical strip.

Color Emphasis
Color is often used for emphasis. Look at Figure 1.20. All things being equal,
the larger shapes dominate, but the small shapes demand your attention
once color is added. Of course, there are many other forms of emphasis
that you can use in creating art, but color can be the most powerful—and
overused. Ever come across a webpage that has a busy background and
every font, color, and mode of emphasis devised by man splashed across it?
There is almost no actual emphasis, since all the elements cancel each other
out. Let this be a cautionary tale to you: Often, less is more.

In another example using a photograph, Figure 1.21, you can see that in the
first black-and-white photo, your eye would most likely be drawn to the dark
opening of the doghouse and you would most likely assume that the subject

20

3D Game Textures: Create Professional Game Art Using Photoshop, Fourth Edition

FIG  1.19  The Color Picker in Photoshop has a vertical rectangle of color graduating from red through the colors and back to red. This allows you to select a
hue and use the Color Picker Palette to change the value and intensity.

Y202224.indb 20 4/4/16 10:46 AM

21

The Basics of Art

FIG  1.20  All things being equal, the larger shapes dominate, but the small shapes demand your attention once color is added.

FIG  1.21  Your eye is most likely drawn to the open door in the black-and-white photo, but add color and the window above draws the primary interest.

Y202224.indb 21 4/4/16 10:46 AM

of this picture is the doghouse. In the second version, the colorful flower
draws the primary interest; it still competes with the doghouse door for
attention, but you would probably make the assumption that the focus of this
picture was the flower.

In a game scene, you can see the use of color drawing the attention of a
player to an important item. Look at Figure 1.22. In the first version of the
scene, you are drawn to the fire and then to all the items in the shadows. In
the second version, the red crate draws your attention and clearly means
something. Depending on the world logic of the game you are playing,
that could simply mean that you can interact with the object, or it could
mean that the item is dangerous. That decision brings us to our next topic:
color expression.

22

3D Game Textures: Create Professional Game Art Using Photoshop, Fourth Edition

FIG  1.22  In a room full of normal objects, the players’ eyes will be drawn to the fire and then equally to the
objects. In a room full of normal objects, a red crate draws attention, especially given the fact that there are other
normal crates around it.

Y202224.indb 22 4/4/16 10:46 AM

Color Expression or Warm and Cool Colors

When you start painting textures and choosing colors, you will want to know
how they interact in terms of contrast, harmony, and even message. There is a
lot of information on this topic, and once again, Johannes Itten (the guy who
did the color wheel) enters the picture. Itten provided artists with a great
deal of information on how color works and how colors work together. Itten
was among the first people to look at color not just from a scientific point of
view but from an artistic and emotional point of view. He was very interested
in how colors made people feel. From his research we get the vocabulary of
warm and cool colors.

We all are familiar with this convention, since it is mostly based on the natural
world. When asked to draw a flame, we reach for the red or orange crayon. Ice
is blue; the sun, yellow. Each warm and cool color has commonly associated
feelings, both positive and negative. The brighter or more pure the color, the
more positive the association. Darker and duller colors tend to have negative
connotations associated with them.

The warm colors are red and yellow, and the cool colors are blue and green.
Children will color the sun yellow and color ice blue and use the black crayon
to scratch out things they don’t like. Traffic lights are hot when you should
stop or be cautious (red and yellow) and cool when it is okay to go (green). Red
and orange are hot and usually associated with fire, lava, and coals. How many
red and black shirts do you see at the mall? Red and black together generally
symbolize demonic obsession. Red by itself can mean royalty and strength as
well as demonism. Deep red can be erotic. Yellow is a hot color like the sun—a
light giver. Yellow is rich like gold as a pure color. A deep yellow (amber)
window in the dark of a cold night can mean fire and warmth. But washed out
or pale yellow can mean envy or betrayal. Calling a person yellow is an insult,
meaning that he is a coward. Judas is portrayed as wearing yellow garments in
many paintings. During the Inquisition, people who were considered guilty of
heresy were made to wear yellow. For green, we think of lush jungles teeming
with life. As green washes out, we get a sense of dread and decay (zombie and
orc skin). Vibrant green in a certain context can be toxic waste and radioactive
slime. Blue in its saturated state is cold like ice, but fresh like water and the sky.
Darker blues indicate misery. Purple is mysterious and royal.

Keep in mind that color is context-sensitive. Water is generally blue (would
you drink dark-green water?). But not just any blue will do. In the real world,
if we come across water that is a saturated blue that we can’t see through,
we get suspicious. Was this water dyed? Are there weird chemicals in there?
If anything lives in that, what could it be?! Blood is generally red, but what if
an enemy bled green? What if the game you are playing is about an alien race
taking over earth and one of your companions bleeds green from an injury
during combat? In a fantasy game, you might come across coins. Which coin
do you take: the one made of bright yellowish metal or the one made of gray-
green metal? With no previous information on the color of coins in this world,
most people would pick the brighter yellow. Look at Figure 1.23. What are
some of the assumptions you might make about these three scenes?

23

The Basics of Art

Y202224.indb 23 4/4/16 10:46 AM

24

3D Game Textures: Create Professional Game Art Using Photoshop, Fourth Edition

FIG  1.23  These three scenes are the same except for the ax. What questions and/or assumptions run through
your mind looking at each version?

Y202224.indb 24 4/4/16 10:46 AM

Looking at color in this way might make it seem a bit mechanical, but it still
takes a talented artist to make the right color choices. You can memorize all
the information in the world, but it usually comes down to having a good eye
and being able to convey that vision in your work and to your coworkers.

Perspective
We discussed earlier in this chapter that dramatic perspective (Figure 1.24)
is usually not used in the creation of a game texture, although sometimes
perspective is present and needs to be understood. In addition,
understanding perspective is not only a valuable artistic tool to have
available but will also help you when you are taking digital reference images
and when you are cleaning and straightening those images. We will look at
the artistic aspects of perspective now; later, in the chapter on cleaning and
storing your assets, we will talk about fixing those images.

Quite simply, perspective is the illusion that something far away from us is
smaller than closer objects. This effect can be naturally occurring, as in a
photo, or a mechanically created illusion in a painting. You can see samples
of this illusion in Figure 1.25. In 2D artwork, perspective is a technique used
to recreate that illusion and give the artwork a 3D depth. Perspective uses
overlapping objects, horizon lines, and vanishing points to create a feeling
of depth. You can see in Figure 1.26 an image and the same image with the

25

The Basics of Art

FIG  1.24  Although dramatic perspective is used in traditional art, it is not used in a game texture. But there is some notion of perspective, so it is best to
understand the concept.

Y202224.indb 25 4/4/16 10:46 AM

major lines of perspective as they converge on one point, called the vanishing
point. Several types of perspective are used to achieve different effects.

One-Point Perspective

One-point perspective is when all the major lines of an image converge on
one point. This effect is best illustrated when you’re looking down a set
of straight railroad tracks or a long road. The lines of the road and track,
although we know they are the same distance apart, seem to meet and join
together at some point in the far distance—the vanishing point. In one-point
perspective, all the lines move away from you (the z-axis) and converge at the
vanishing point.

Vertical and horizontal or up and down and right and left lines (the x- and
y-axes) remain straight, as seen in Figure 1.27.

26

3D Game Textures: Create Professional Game Art Using Photoshop, Fourth Edition

FIG  1.25  Perspective is the illusion that something far away from us is smaller. Are the telephone poles actually
getting smaller in this image? Are the train tracks really getting closer together?

Y202224.indb 26 4/4/16 10:46 AM

27

The Basics of Art

FIG  1.26  In 2D artwork, perspective is a technique used to recreate that illusion and give the artwork a
3D depth.

1

FIG  1.27  In one-point perspective, all the lines that move away from the viewer seem to meet at a far point on
the horizon. This point is called the vanishing point.

Y202224.indb 27 4/4/16 10:46 AM

Two-Point Perspective

One-point perspective works fine if you happen to be looking directly at
the front of something or standing in the middle of some railroad tracks,
but what if the scene is viewed from the side? Then you shift into two-point
perspective. Two-point perspective has two vanishing points on the horizon
line. All lines, except the vertical, will converge onto one of the two vanishing
points. See Figure 1.28.

Three-Point Perspective

Three-point perspective is probably the most challenging of all. In three-point
perspective every line will eventually converge on one of three points. Three-
point perspective is the most dramatic and can often be seen in comic books
when the hero is flying over buildings or kicking butt in the alley below as the
buildings tower above. Figure 1.29 shows three-point perspective.

Perspective, from the texture artist’s point of view while photographing
surfaces for game art, can be the enemy. We will look at that issue in a coming
chapter when we talk about collecting and cleaning your images. From the
art education point of view, knowing what perspective is and what it looks
like is enough for now.

28

3D Game Textures: Create Professional Game Art Using Photoshop, Fourth Edition

1

1

2

2

FIG  1.28  Two-point perspective has two vanishing points on the horizon line. All lines, except the vertical ones,
will converge onto one of the two vanishing points.

Y202224.indb 28 4/4/16 10:46 AM

Quick Studies of the World Around You
The following pages display some quick studies that I did of random objects.
I tried to work through each of them as a game artist might to give you some
quick and general examples of how a game artist might break them down.
We will do this type of exercise in more depth throughout the book, but in
the tutorial portions of the book, those breakouts will be more specific and
focused on the goal at hand. This is a general look and introduction on the
thought process of recreating surfaces and materials in a digital environment.
I covered all that was introduced in this chapter: shape and form, light and
shadow, texture, and color, as well as considering other aspects of the object
or material. I didn’t touch on perspective in these exercises because I wanted
to limit the exercise to recreating 2D surfaces (textures), and perspective is
not as critical as the other concepts in this chapter. In the following pages,
Figures 1.30 to 1.35 each have a caption that discusses the particulars of
each study.

Conclusion
This chapter was an overview of the most basic yet critical aspects of
traditional art. Understanding the concepts in this chapter and further
exploring them on your own will make you a much better texture artist. We
are now ready to get more technical and look at the mechanical issues of
creating game textures.

29

The Basics of Art

1 2

3

FIG  1.29  In three-point perspective, every line will eventually converge on one of three vanishing points.

Y202224.indb 29 4/4/16 10:46 AM

30

3D Game Textures: Create Professional Game Art Using Photoshop, Fourth Edition

FIG  1.30  The upper-left image is a digital photo of some simple concrete stairs. You might have an art lead
e-mail you an image like this and tell you that she wants a texture based on these stairs. Fortunately, this is a
rather simple form; it doesn’t have a lot of color or detail to distract us. Look at the simple recreation of the stairs
to the right showing the basic light and shadow patterns on the stairs. The lower-left image shows the 2D texture
created in Photoshop to be applied to a 3D model of the stairs. If you look at the yellow stripe on the stairs and
compare it to the stripe on the texture, you can see the highlights painted in the texture where the edge of the
step is and the shadow under the lip of the edge. If you were able to closely examine the original digital image
of the stairs, you would see an almost infinite amount of detail. Part of the texture artist’s job is to know when
to draw the line. Here I didn’t include every scuff and mark from the original stair image because that approach
wouldn’t work. You will learn in coming chapters that such details usually stand out and draw attention to the
repeating pattern of a texture, or, in the case of fabrics and fine meshes, can create noise or static in the texture. I
created this texture pretty quickly; given more time, I would experiment with the chips and wear on the edge of
the steps to add more character.

Y202224.indb 30 4/4/16 10:46 AM

31

The Basics of Art

FIG  1.31  This is a straight-on photo of an interior plaster wall. I included this obviously unexciting image to
demonstrate that even in such a simple surface, there can be complex highlight and shadow going on. Look at
the color swatches of the highlight, shadow, and midtone. Notice that the colors are not simple black, white, and
gray. The highlight is not pure white or light gray, but a very pale green. Look at the close-up of the image. You
can clearly see the consistent behavior of light as it highlights the upper ridges of the plaster and shadow falls
from the lower edges. Once you start studying such seemingly commonplace things, like a wall that you walk by a
hundred times a day, you will start to notice, understand, and remember how various lights, materials, and other
factors affect a surface. Do you convey that simple raised pattern in the texture using geometry or a shader? Of
course, that depends on many factors, and hopefully by the end of this book you will know what questions to ask
to determine the answers to such questions.

Y202224.indb 31 4/4/16 10:46 AM

32

3D Game Textures: Create Professional Game Art Using Photoshop, Fourth Edition

FIG  1.32  This image simply shows the world that I need to wash my car. Seriously, look at the various parts
of complex objects and you will see a variety of surface behaviors. Notice how the paint is highly reflective and
mirrors the world around the car. The metal is not flat like a mirror, so notice the distortion of the reflected image.
The windows, while reflecting the surrounding world as well, are translucent, so you can see what’s behind the
window and on the other side of the car. The window also has a patina of dirt and spots on it. If you needed to
recreate this object as realistically as possible, you would have to take all those aspects into consideration and
determine the best way to achieve the effect. Look at the close-up of the rim. You can see that the highlights are
not mirror-like in their accuracy but rather are a diffuse notion of highlight. This looks simple to paint, but wheels
rotate and will instantly look bad if not painted properly. Using a real-time process for highlights eliminates this
problem. Though the tires are flat black and reveal only a faint notion of highlight, depending on the detail level,
you may be dealing with complex mapping and shader effects here, too. All of this seems obvious, but taking
the time to examine the object you are recreating and to understand what you are seeing and how to verbalize it
helps when turning the object into game art. If you were to make materials or textures for this vehicle, you would
need to know many things about the technology and how the car will be used in the game. Can we have real-
time environmental reflections? Can we fake them using a shader? Do we have to carefully paint in a vague notion
of metallic highlights that work in all situations the car may be in? And the windows: Can we do a translucent/
reflective surface with an alpha channel for dirt? If the car is used in a driving game in which the vehicle is the
focus of the game and the player gets to interact up close and personal with the car, I am sure a lot of attention
will be given to these questions. But if this car is a static prop sitting on a street that the player blazes past, then
over-the-top effects may only be a waste of development time and computer resources.

Y202224.indb 32 4/4/16 10:46 AM

33

The Basics of Art

FIG  1.33  This sewer intrigued me: a simple shape of a common item that many might overlook as not worthy
of serious attention. Some may have the attitude that it is only a sewer grate, so make it and move on. But a shiny
new sewer grate with clean edges would stand out in a grungy urban setting. Look at this sewer grate. It is made
of iron and looks solid and heavy. It was probably laid down decades ago and has had thousands of cars drive over
it, people walk over it, millions of gallons of rainwater pour through it. On the image at the upper left you can look
at the iron and see how it is rusted, but it’s so well worn that the rust is polished off in most places. Dirt has built
up in the cracks between the grate, the rim, and the concrete. Even little plants have managed to grow. Look at
the close-up at the upper right and you can see just how beat-up this iron is and how discolored it has become.
At the lower left, I desaturated and cleaned up a portion of the image to see just how the light and shadow are
hitting it and to get a feel for the quality of the surface. In this image, you can more clearly see the roughness
of the cement and the metal, and although the circular grate looks round from a distance, up close there are no
straight edges and smooth curves. All this detail can’t be depicted 100% in a game texture, but knowing it’s there
and understanding what you are seeing will allow you to convey a richer version of the grate as you learn to focus
on those details that add realism and character. On the lower right is a texture I did, and you can see that I was
able to quickly achieve a mottled and grungy look for the metal and the edges. There are a few places at the top
where I started the process of eating away at the concrete and the metal a bit.

Y202224.indb 33 4/4/16 10:46 AM

34

3D Game Textures: Create Professional Game Art Using Photoshop, Fourth Edition

Source Image

Shape

Color

Texture

Light and Shadow

FIG  1.34  This image is similar to the sewer in approach. Here I wanted to point out how a simple shape can be
turned into an ornate hinge with little effort. The top image is the original digital photo of the hinge. I drew the
shape of the hinge in Photoshop. You may notice that I drew the screws separately. This is because you need
the shapes separately to work with them in Photoshop—you will see why later in the book. In Photoshop I
applied and adjusted the Layer Effects and then colored the hinge close to the overall color of the original. After
that it was a matter of applying the right filters and doing some hand work to get the edges looking right. We
will be doing this type of work throughout the book. I will remind you from time to time that although the best
approach may be to use a photo source or any one of the other methods available, the focus of this book is to
help you develop a set of Photoshop skills that will allow you to not depend on any one method. These skills will
improve your abilities when you’re working in any of the other methods.

Y202224.indb 34 4/4/16 10:46 AM

Chapter Exercises
	1.	 Examine and sketch your own series of basic shapes from world objects.

Start with a ball, a cereal box, and other simple objects and work up to
more complex items (what basic shapes is a car made from?). Pick three
different objects and sketch each using only basic shapes. Compare the
accuracy of your drawing by holding it at arm’s length next to the object
in the background. If you are having trouble with this exercise, it may help
to use a picture so that you can work side by side and compare the two
images—yours and the original.

	2.	 Train your eye to see light and shadow. Start with a flashlight or one light
source in a dark room and shine it at an object on a bare tabletop. The
shadow should be pretty easy to identify. Move the light back and at
different angles and watch the shadow move. Now turn on another light
source. Is it brighter than the light you are holding? Is it a different color?
See how the dual shadows interact with each other. What happens to the
shadow when the object is moved instead of the light? Also study how
light and shadow affect color. Notice the various shades of color across
a surface that may at first seem to be one solid color. Better yet, take an

35

The Basics of Art

Source Image

Light and Shadow

Shape

FIG  1.35  This light switch is a common object that you might need to create. Instead of taking the time to clean
up and manipulate a photo, you can just make one more quickly from scratch. The switch is composed of simple
shapes with the Layer Effects applied. The wall behind the switch was a quick series of filters to add a base for
this exercise.

Y202224.indb 35 4/4/16 10:46 AM

image into Photoshop and sample the various parts of the surface from
darkest to lightest and take note of the range of shades the surface holds.

	3.	 Focus on visual texture. Pick any object and look at it closely. A common
mistake new artists make is to create a base texture and stop. A perfectly
colored, shiny, and cleaner-than-clean plastic-looking object is going
to look fake. In real life, even a new object has some texture—if not an
actual texture, like a leather grain, then a notion of the imperfection of
the real world. Sometimes a subtle noise or cloud overlay is enough to
create the almost indistinguishable texture that creates a more believable
surface. Any object in the real world will have scratches from wear and
tear, and other signs of use will develop pretty quickly. Study the texture
of common objects and see what has created this object’s texture. Is a
wooden porch step smooth from use or rough due to weather and decay?

	4.	 Look closely at what color you are “really” seeing. As noted in this chapter,
we mentally fill in a lot of blanks when it comes to trying to determine
what we are seeing. Color is no exception. Look at images from the
Internet, or better yet, take digital images with your own camera and load
them into Photoshop or a similar image program. Sample the colors of
various spots and see that almost no color is going to be pure, perfectly
even, or at all where you might think it would be on the color selector. A
red mug is not going to be a pure red mug; it will most likely be a shade
darker or lighter or contain other colors.

	5.	 Color expression: Can you make a puppy look evil? Try painting its eyes
red. Take an image of a garden and desaturate it. What other images can
you take and simply change the colors (all of them across the image or
only one color) and create various moods and messages? A house with
rich amber windows at night might seem inviting. How does a window
with a red tint or a green cast make you feel? Try combining colors,
too. An amber window with a predominantly black surrounding may
feel like a lonely sight in the void, as opposed to the fanciful and richer
blue surrounding.

	6.	 Do your own quick studies of the world. Take pictures or just examine a
surface or object and determine every bit of information you can based
on what you learned in this chapter. Define the basic shape, note how
light and shadow play on the object and how the object affects the light
and shadow of the world around it, and sample and determine the colors
of the object and the amount of variation of the color along the surface of
the object. How would you begin to create the surface of this object in
Photoshop? Don’t try yet, but think about it. Later you will learn the tools
necessary to create surfaces, but for now you need to be able to dissect
a surface and determine what colors, shapes, and other qualities the
surface contains.

36

3D Game Textures: Create Professional Game Art Using Photoshop, Fourth Edition

Y202224.indb 36 4/4/16 10:46 AM

THE FIVE FUNDAMENTALS
OF GAME ANIMATION

#

This chapter is excerpted from

Game Anim

by Jonathan Cooper

© 2019 Taylor & Francis Group. All rights reserved.

3

Learn more

https://www.crcpress.com/Game-Anim-Video-Game-Animation-Explained/Cooper/p/book/9781138094871?utm_source=shared_link&utm_medium=post&utm_campaign=B190204554
https://www.crcpress.com/Game-Anim-Video-Game-Animation-Explained/Cooper/p/book/9781138094871?utm_source=shared_link&utm_medium=post&utm_campaign=B190204554

The Five Fundamentals
of Game Animation

The 12 animation principles are a great foundation for any animator to
understand, and failure to do so will result in missing some of the underlying
fundamentals of animation—visible in many a junior’s work. Ultimately,
however, they were written with the concept of linear entertainment like TV
and film in mind, and the move to 3D kept all of these elements intact due
to the purely aesthetic change in the medium. Three-dimensional animated
cartoons and visual effects are still part of a linear medium, so they will
translate only to certain elements of video game animation—often only if the
game is cartoony in style.

As such, it’s time to propose an additional set of principles unique to game
animation that don’t replace but instead complement the originals. These
are what I have come to know as the core tenets of our new nonlinear
entertainment medium, which, when taken into consideration, form the basis
of video game characters that not only look good, but feel good under player
control—something the original 12 didn’t have to consider. Many elements
are essential in order to create great game animation, and they group under
five fundamental areas:

	1.	 Feel
	2.	 Fluidity
	3.	 Readability
	4.	 Context
	5.	 Elegance

Feel
The single biggest element that separates video game animation from
traditional linear animation is interactivity. The very act of the player
controlling and modifying avatars, making second-to-second choices,
ensures that the animator must relinquish complete authorship of the
experience. As such, any uninterrupted animation that plays start to finish is
a period of time the player is essentially locked out of the decision-making
process, rendered impotent while waiting for the animation to complete (or
reach the desired result, such as landing a punch).

Chapter 4

41

The time taken between a player’s input and the desired reaction can
make the difference between creating the illusion that the player is
embodying the avatar or becoming just a passive viewer on the sidelines.
That is why cutscenes are the only element in video games that for years have
consistently featured a “skip” option—because they most reflect traditional
noninteractive media, which is antithetical to the medium.

Response
Game animation must always consider the response time between player
input and response as an intrinsic part of how the character or interaction
will “feel” to the player. While generally the desire is to have the response be
as quick as possible (fewer frames), that is dependent on the context of the
action. For example, heavy/stronger actions are expected to be slower, and
enemy attacks must be slow enough to be seen by the player to give enough
time to respond.

It will be the game animator’s challenge, often working in concert with a
designer and/or programmer, to offer the correct level of response to provide
the best “feel,” while also retaining a level of visual fidelity that satisfies all the
intentions of the action and the character. It is important not to sacrifice
the weight of the character or the force of an action for the desire to make
everything as responsive as possible, so a careful balancing act and as many
tricks as available must be employed.

Ultimately, though, the best mantra is that “gameplay wins.” The most fluid
and beautiful animation will always be cut or scaled back if it interferes
too much with gameplay, so it is important for the game animator to
have a player’s eye when creating response-critical animations, and, most
importantly, play the game!

Inertia & Momentum
Inertia is a great way to not only provide a sense of feel to player characters,
but also to make things fun. While some characters will be required to turn
on a dime and immediately hit a run at full speed, driving a car around a
track that could do the same would not only feel unrealistic but mean there
would be no joy to be had in approaching a corner at the correct speed for
the minimum lap time. The little moments when you are nudging an avatar
because you understand their controls are where mastery of a game is to be
found, and much of this is provided via inertia.

Judging death-defying jumps in a platform game is most fun when the
character must be controlled in an analogue manner, whereby they take
some time to reach full speed and continue slightly after the input is released.
This is as much a design/programming challenge as it is animation, but the
animator often controls the initial inertia boost and slowdown in stop/start
animations.

42

Game Anim: Video Game Animation Explained

Momentum is often conveyed by how long it takes a character to change
from current to newly desired directions and headings. The general principle
is that the faster a character is moving, the longer it takes to change direction
via larger turn-circles at higher speeds or longer plant-and-turn animations in
the case of turning 180°.

Larger turn-circles can be made to feel better by immediately showing the
intent of the avatar, such as having the character lean into the turn and/or
look with his or her head, but ultimately we are again balancing within a very
small window of time lest we render our characters unresponsive.

A classic example is the difference between the early Mario and Sonic
the Hedgehog series. Both classic Mario and Sonic’s run animations rely
heavily on inertia and have similar long ramp-ups to full speed. While Mario
immediately starts cartoonishly running at full speed as his legs spin on
the ground to gain traction, Sonic slowly transitions from a walk to a run to
a sprint. While Mario subjectively feels better, this is by design, as Sonic’s
gameplay centers on high speeds and “flow,” so stopping or slowing down is
punitive for not maintaining momentum.

Visual Feedback
A key component of the “feel” of any action the player and avatar perform is
the visual representation of that action. A simple punch can be made to feel
stronger with a variety of techniques related to animation, beginning with
the follow-through following the action. A long, lingering held pose will do
wonders for telling the player he or she just performed a powerful action.
The damage animation on the attacked enemy is a key factor in informing the
player just how much damage has been suffered, with exaggeration being a
key component here.

In addition, employing extra tricks such as camera-shake will help further
sell the impact of landing the punch or gunshot, not to mention visual
effects of blood or flashes to further register the impact in the player’s mind.
Many fighting games employ a technique named “hit-stop” that freezes the

43

The Five Fundamentals of Game Animation

Original sketches from Sonic the Hedgehog (circa 1990). The animation frames
are already heavily displaying inertia. (Courtesy of SEGA of America.)

characters for a single frame whenever a hit is registered. This further breaks
the flow of clean arcs in the animations and reinforces the frame on which the
impact took place.

As many moves are performed quickly so as to be responsive, they might
get lost on the player, especially during hectic actions. Attacking actions can
be reinforced by additional effects that draw the arc of the punch, kick, or
sword-swipe on top of the character in a similar fashion to the “smears” and
“multiples” of old. When a sword swipe takes only 2 frames to create its arc,
the player benefits mostly from the arcing effect it leaves behind.

Slower actions can be made to feel responsive simply by showing the player
that at least part of their character is responding to their commands. A rider
avatar on a horse can be seen to immediately turn the horse’s head with the
reins even if the horse itself takes some time to respond and traces a wide
circle as it turns. This visual feedback will feel entirely more responsive than a
slowly turning horse alone would following the exact same wide turn.

Fluidity
Rather than long flowing animations, games are instead made of lots of
shorter animations playing in sequence. As such, they are often stopping,
starting, overlapping, and moving between them. It is a video game
animator’s charge to be involved in how these animations flow together so as
to maintain the same fluidity put into the individual animations themselves,
and there are a variety of techniques to achieve this, with the ultimate goal
being to reduce any unsightly movement that can take a player out of the
experience by highlighting where one animation starts and another ends.

Blending and Transitions
In classic 2D game sprites, an animation either played or it didn’t. This binary
approach carried into 3D animation until developers realized that, due
to characters essentially being animated by poses recorded as numerical
values, they could manipulate those values in a variety of ways. The first such

Much of the delay in visual feedback comes not from the animation alone,
but the way different game engines handle inputs from the joypad in the
player’s hands. Games like the Call of Duty series place an onus on having
their characters and weapons instantly respond to the player’s inputs
with minimal lag and high frame rates, whereas other game engines
focused more on graphics postprocessing will have noticeably longer
delays (measured in milliseconds) between a jump button-press and the
character even beginning the jump animation, for example. This issue is
further exacerbated by modern HDTVs that have lag built in and so often
feature “Game Mode” settings to minimize the effect. All this said, it is still
primarily an animator’s goal to make characters as responsive as possible
within reason.

44

Game Anim: Video Game Animation Explained

improvement that arrived was the ability to blend across (essentially cross-
fading animations during a transitory stage) every frame, taking an increasing
percentage of the next animation’s value and a decreasing percentage of the
current as one animation ended and another began. While more calculation
intensive, this opened up opportunities for increasing the fluidity between
individual animations and removing unsightly pops between them.

A basic example of this would be an idle and a run. Having the idle
immediately cancel and the run immediately play on initial player input will
cause the character to break into a run at full speed, but the character will
unsightly pop as he or she starts and stops due to the potential repeated
nature of the player’s input. This action can be made more visually appealing
by blending between the idle and run over several frames, causing the
character to more gradually move between the different poses. Animators
should have some degree of control over the length of blends between
any two animations to make them as visually appealing as possible, though
always with an eye on the gameplay response of the action.

The situation above can be improved further (albeit with more work) by
creating brief bespoke animations between idle and run (starting) and back
again (stopping), with blends between all of them. What if the player started
running in the opposite direction he or she is facing? An animator could
create a transition for each direction that turned the character as he or she
began running in order to completely control the character’s weight-shift as
he or she leans into the desired direction and pushes off with his or her feet.

45

The Five Fundamentals of Game Animation

Prince of Persia: Sands of Time was the first game to really focus on small transitions for fluidity.
(Copyright 2003 Ubisoft Entertainment. Based on Prince of Persia®, created by Jordan Mechner. Prince of Persia is

a trademark of Waterwheel Licensing LLC in the US and/or other countries used under license.)

What if the character isn’t running but only walking? Again, the animator
could also create multiple directional transitions for that speed. As you can
see, the number of animations can quickly spiral in number, so a balance
must be found among budget, team size, and the desired level of fluidity.

Seamless Cycles
Even within a single animation, it is essential to maintain fluidity of motion,
and that includes when a cycling animation stops and restarts. A large
percentage of game animations repeat back on themselves, so it is important
to again ensure the player cannot detect when this transition occurs. As such,
care must be taken to maintain momentum through actions so the end of the
animation perfectly matches the start.

It is not simply enough to ensure the last frame of a cycle identically matches
the first; the game animator must also preserve momentum on each body
part to make the join invisible. This can be achieved by modifying the curves
before and after the last frame to ensure they create clean arcs and continue in
the same direction. For motion-capture, where curves are mostly unworkable,
there are techniques that can automatically provide a preservation of
momentum as a cycle restarts that are described later in this book.

Settling
This kind of approach should generally be employed whenever a pose must
be assumed at the end of an animation, time willing. It is rather unsightly
to have a large movement like an attack animation end abruptly in the
combat idle pose, especially with all of the character’s body parts arriving
simultaneously. Offsetting individual elements such as the arms and root are
key to a more visually pleasing settle.

Notably, however, games often suffer from too quickly resuming the idle pose
at the end of an animation in order to return control to the player to promote
response, but this can be avoided by animating a long tail on the end of an
animation and, importantly, allowing the player to exit out at a predetermined
frame before the end if new input is provided. This ability to interrupt an
animation before finishing allows the animator to use the desired number of
frames required for a smooth and fluid settle into the following animation.

Settling is generally achieved by first copying the desired end pose to the
end of an animation but ensuring some elements like limbs (even divided

Care should also be taken to maintain momentum when creating
an animation that transitions into a cycle, such as how the stopping
animation should seamlessly match the idle. For maximum fluidity, the
best approach in this case is to copy the approved idle animation and
stopping transition into the same scene to manually match the curves
leading into the idle, exporting only the stopping transition from that
scene.

46

Game Anim: Video Game Animation Explained

into shoulder and forearms) arrive at their final position at different times,
with earlier elements hitting, then overshooting, their goal, creating
overlapping animation. Settling the character’s root (perhaps the single most
important element, as it moves everything not planted) is best achieved
by having it arrive at the final pose with different axes at different times.
Perhaps it achieves its desired height (Y-axis) first as it is still moving left to
right (X-axis), causing the root to hit, then bounce past the final height and
back again. Offsetting in the order of character root, head, and limbs lessens
the harshness of a character fully assuming the end pose on a single frame—
though care must be taken to not overdo overlap such that it results in limbs
appearing weak and floppy.

Readability
After interactivity, the next biggest differentiator between game and
traditional animation, in 3D games at least, is that game animations will
more often than not be viewed from all angles. This bears similarity to the
traditional principle “staging,” but animators cannot cheat or animate to the
camera, nor can they control the composition of a scene, so actions must be
created to be appealing from all angles. What this means is when working
on an animation, it is not enough to simply get it right from a front or side
view. Game animators must take care to always be rotating and approving
their motion from all angles, much like a sculptor walking around a work.

Posing for Game Cameras
To aid the appeal and readability of any given action, it is best to avoid
keeping a movement all in one axis. For example, a combo of three
punches should not only move the whole character forward as he or
she attacks, but also slightly to the left and right, twisting as they do so.

47

The Five Fundamentals of Game Animation

Uncharted 4: A Thief’s End makes heavy use of “abort frames” to exit gameplay
animations and cinematics before completion for fluidity. (Courtesy of Sony

Interactive Entertainment.)

Similarly, the poses the character ends in after every punch should avoid
body parts aligning with any axes, such as arms and legs that appear
to bend only when viewed from the side. Each pose must be dynamic,
with lines of action drawn through the character that are not in line with
any axes.

For the motions themselves, swiping actions always read better than
stabbing motions, as they cover an arc that will be seen by the player
regardless of camera angle. Even without the aid of a trail effect, a swipe
passes through multiple axes (and therefore camera angles), so even if
players are viewing from a less-than-ideal angle, they should still have an idea
of what happened, especially if the character dramatically changes the line of
action during poses throughout the action.

All this said, work to the game being made. If the camera is fixed to the side,
such as in a one-on-one fighting game, then actions should be created to be
most readable from that angle. Similarly, if you are creating a run animation
for a game mostly viewed from the rear, then ensure the cycle looks best
from that angle before polishing for others.

Lines of action are simplified lines that can be drawn through any single
pose to clearly illustrate the overall motion for the viewer. Strong poses can
be illustrated in this way with a single arcing or straight line, whereas weaker
and badly thought-out poses will generally have less-discernible lines that
meander and are not instantly readable to the viewer. Lines that contrast
greatly between one pose and the next (contrasting actions) promote a
more readable motion for the viewer than multiple similar or weak poses.

48

Game Anim: Video Game Animation Explained

League of Legends pushes animation incredibly far due to the far overhead cameras and frenetic onscreen action.
(Courtesy of Riot Games.)

Silhouettes
At the character design/concept stage, the animator should get involved
in helping guide how a character might look, not just to avoid issues
such as hard, armorlike clothing at key versatile joints such as shoulders
or waists. The animator should also help guide the design so as to help
provide the best silhouettes when posed. A character with an appealing
silhouette makes the job of animating far easier when attempting to
create appeal than one composed entirely of unimaginative blobs or
shapeless tubes for limbs.

It is advisable to request “proxy” versions of characters at early stages of
development so they can be roughly animated and viewed in the context of
the gameplay camera, which, due to wide fields of view (for spatial awareness
gameplay purposes), often warps the extremities of character as they reach
the screen’s edge. Generally, the most appealing characters look chunkier
and thicker than they might in real life, due to them being warped and
stretched once viewed from the wide-angle game camera.

Collision & Center of Mass/Balance
As with all animation, consideration must be given to the center of mass
(COM; or center of balance) of a character at any given frame, especially
as multiple animations transition between one another so as to avoid

49

The Five Fundamentals of Game Animation

Team Fortress 2 uses distinct character silhouettes for gameplay, making the animator’s job of bringing appeal
much easier. (Used with permission from Valve Corp.)

unnatural movements when blending. The COM is generally found over the
leg that is currently taking the full weight of the character’s root when in
motion or between both feet if they are planted on the ground when static.
Understanding this basic concept of balance will not only greatly aid posing
but also avoid many instances of motions looking wrong to players without
them knowing the exact issue.

This is especially true when considering the character’s collision (location) in the
game world. This is the single point where a character will pivot when rotated
(while moving) and, more importantly, where the character will be considered
to exist in the game at any given time. The game animator will always animate
the character’s position in the world when animating away from the 3D scene
origin, though not so if cycles are exported in place. Importantly, animations
are always considered to be exported relative to this prescribed location, so
characters should end in poses that match others (such as idles) relative to this
position. This will be covered in full in the following chapter.

Context
Whereas in linear animation, the context of any given action is defined
by the scene in which it plays and what has happened in the story up
to that point and afterward, the same is impossible in game animation.
Oftentimes, the animator has no idea which action the player performed
beforehand or the setting in which the character is currently performing
the action. More often than not, the animation is to be used repeatedly
throughout the game in a variety of settings, and even on a variety of
different characters.

Distinction vs Homogeneity
Due to the unknown setting of most game animations, the animator
must look for opportunities to give character to the player and nonplayer
characters whenever possible, and must also consider when he or she should
avoid it.

If, for example, the animator knows that a particular run cycle is only to be
performed on that character being animated, then he or she can imbue it
with as much personality as matches the character description. It’s even
better if the animator can create a variety of run cycles for that character in
different situations. Is the character strong and confident initially, but later
suffers loss or failure and becomes despondent? Is the character chasing
after someone or perhaps running away from a rolling boulder about to
crush him or her? The level of distinction the animator should put into the
animation depends on how much control he or she has over the context in
which it will be seen.

50

Game Anim: Video Game Animation Explained

If an animation is not designed for the player character but instead to be
used on multiple nonplayer characters, then the level of distinction and
notability should generally be dialed down so as to not stand out. Walks
and runs must instead be created to look much more generic, unless
the animation is shared by a group of NPCs only (all soldiers might run
differently from all civilians). Almost always, the player character is unique
among a game world’s inhabitants, so this should be reflected in his or her
animations.

Repetition
Similarly, within a cycling animation, if the action is expected to be repeated
endlessly, such as an idle or run cycle, then care must be taken to avoid any
individual step or arm swing standing out against the rest, lest it render the
rhythm of repetition too apparent to the player—such as every fourth step
having a noticeably larger bounce for example.

Stand-out personality can instead be added to on-off actions or within cycles
via “cycle breakers” such as the character shifting his or her footing after
standing still too long, performing a slight stumble to break up a tired run, or
even by modifying the underlying animation with additive actions—covered
in more detail in the following chapter.

51

The Five Fundamentals of Game Animation

The player character generally moves at a much higher fidelity and
with more distinction than NPCs. (Copyright 2007–2017 Ubisoft

Entertainment. All Rights Reserved. Assassin’s Creed, Ubisoft, and the
Ubisoft logo are trademarks of Ubisoft Entertainment in the US and/or

other countries.)

Onscreen Placement
A key factor in setting the exaggeration of movement is the relative size on
the screen of the character as defined by the camera distance and field of
view. While cameras have gotten closer and closer as the fidelity of characters
has risen, players still need to see a lot of the environment on screen for
awareness purposes, so many games may show characters that are quite
small. Far cameras require actions to be much larger than life so as to be read
by the player.

The same is true of enemy actions that are far off in the distance, such as
damage animations to tell the player he or she landed a shot. Conversely,
only really close cameras such as those employed in cutscenes afford
subtleties like facial expressions—here, overly theatrical gestures will
generally look out of place. It is important as a game animator to be aware
of the camera for any particular action you are animating and to animate
accordingly within the style of the project. The wide field of view of the
gameplay camera will even distort the character enough to affect the look
of your animation, so, as ever, the best way to evaluate the final look of your
animation is in the game.

Elegance
Game animations rarely just play alone, instead requiring underlying systems
within which they are triggered, allowing them to flow in and out of one
another at the player’s input—often blending seamlessly, overlapping one
another, and combining multiple actions at once to ensure the player is
unaware of the individual animations affording their avatar motion.

If not designing them outright, it is the game animator’s duty to work with
others to bring these systems and characters to life, and the efficiency of

52

Game Anim: Video Game Animation Explained

Uncharted: Drake’s Fortune utilized additive poses to avoid repetition when
in cover.

any system can have a dramatic impact on the production and the team’s
ability to make changes further down the line toward the end of a project.
Just as a well-animated character displays efficiency of movement, a
good, clean, and efficient system to play them can work wonders for the
end result.

Simplicity of Design
Industrial designer Dieter Rams, as the last of his 10 principles of good
design, stated that good design involves “as little design as possible,”
concentrating only on the essential aspects. A good game animation system
should similarly involve no more design than required, as bloated systems
can quickly become unworkable as the project scales to the oft-required
hundreds or thousands of animations.

Every unique aspect of character-based gameplay will require a
system to play back animations, from the navigation around the world
to combat to jumping and climbing to conversation and dialogue and
many more. Here, the game animator must aid in creating systems to
play back all the varied animation required to bring each element of
character control to life, and often the desire to create many animations
will come into conflict with the realities of production such as project length
and budget.

Thankfully, there are many tricks that a team can employ to maximize their
animation potential, such as reuse and sharing, layering and combining
animations to create multiple combinations, or ingenious blending solutions
to increase the fluidity without having to account for absolutely every
possible transition outcome. While the simplest solution is to do nothing

53

The Five Fundamentals of Game Animation

DOOM opted for full-body damage animations over body parts alone for visual
control. (DOOM® Copyright 2016 id Software LLC, a ZeniMax Media company. All

Rights Reserved.)

more than play animations in sequence, this will rarely produce the best and
most fluid visuals, so the smartest approach is to manipulate animations at
runtime in the game engine to get the most out of the animations the team
has the time to create. Again, we’ll cover some of the potential systemic
solutions in the following chapter.

Bang for the Buck
Just as we look to share animations, being smart about choices at the design
stage should create a workable method of combining animations throughout
production. This will in turn prevent unique solutions being required for
every new system. For example, a well-thought-out system for opening
doors in a game could be expanded to interacting with and opening crates
if made efficiently. When building any one system, anticipating uses beyond
the current requirements should always be considered.

A good approach to system design will produce the maximum quality of
motion for the minimum amount of overhead (work). It must be stressed
that every new animation required not only involves the initial creation but
later modification over multiple iterations, as well as debugging toward the
end of the project. Every stage of development is multiplied by every asset
created, so avoiding adding 20 new animations for each object type is not
only cost effective but allows more objects to be added to the game. (All that
said, sometimes the solution to a system is just to brute-force create lots of
animations if your budget allows it.)

Sharing & Standardization
As mentioned earlier, it is important to know when to keep animations
generic and when to make unique ones for each example. If the game
requires the player character interact with many objects in a game,
then it would be wise to standardize the objects’ sizes so one animation
accommodates all objects of a particular size.

The same goes for world dimensions, where if a character can vault over
objects throughout the game, then it makes sense to standardize the height
of vaultable objects in the environment so the same animation will work
anywhere—not least so the player can better read the level layout and know
where the character can and cannot vault.

54

Game Anim: Video Game Animation Explained

That said, if your gameplay is primarily about picking up objects or vaulting
over things, then it may be worth creating more unique animations to really
highlight that area and spend less effort elsewhere. This, again, feeds back
into the idea of bang for the buck and knowing what is important to your
particular game.

All these decisions must come into play when designing systems for your
game, as very few teams can afford unique and bespoke animations for each
and every situation. Nevertheless, beautiful game animation can come from
even single-person teams that focus on one thing and do it very very well. This
is the crux of what good design is, and every aspect of game development
benefits from clever and elegant design, regardless of game type.

55

The Five Fundamentals of Game Animation

Gears of War featured high and low cover heights supported by different sets of
animations. (Copyright Microsoft. All rights reserved. Used with permission from

Microsoft Corporation.)

INTRODUCTION TO GAME
ENGINE ARCHITECTURE

#

This chapter is excerpted from

Game Engine Architecture

by Jason Gregory

© 2018 Taylor & Francis Group. All rights reserved.

4

Learn more

https://www.crcpress.com/Game-Engine-Architecture-Third-Edition/Gregory/p/book/9781138035454?utm_source=shared_link&utm_medium=post&utm_campaign=B190204554
https://www.crcpress.com/Game-Engine-Architecture-Third-Edition/Gregory/p/book/9781138035454?utm_source=shared_link&utm_medium=post&utm_campaign=B190204554

1
Introduction

W hen I got my first game console in 1979—a way-cool Intellivision sys-
tem byMattel—the term “game engine” did not exist. Back then, video

and arcade games were considered by most adults to be nothing more than
toys, and the software that made them tick was highly specialized to both
the game in question and the hardware on which it ran. Today, games are a
multi-billion-dollar mainstream industry rivaling Hollywood in size and pop-
ularity. And the software that drives these now-ubiquitous three-dimensional
worlds—game engines like Epic Games’ Unreal Engine 4, Valve’s Source engine
and, Crytek’s CRYENGINE® 3, Electronic Arts DICE’s Frostbite™ engine, and
the Unity game engine—have become fully featured reusable software devel-
opment kits that can be licensed and used to build almost any game imagin-
able.

While game engines vary widely in the details of their architecture and im-
plementation, recognizable coarse-grained patterns have emerged across both
publicly licensed game engines and their proprietary in-house counterparts.
Virtually all game engines contain a familiar set of core components, including
the rendering engine, the collision and physics engine, the animation system,
the audio system, the game world object model, the artificial intelligence sys-
tem and so on. Within each of these components, a relatively small number of
semi-standard design alternatives are also beginning to emerge.

3

4 1. Introduction

There are a great many books that cover individual game engine subsys-
tems, such as three-dimensional graphics, in exhaustive detail. Other books
cobble together valuable tips and tricks across a wide variety of game tech-
nology areas. However, I have been unable to find a book that provides its
reader with a reasonably complete picture of the entire gamut of components
that make up amodern game engine. The goal of this book, then, is to take the
reader on a guided hands-on tour of the vast and complex landscape of game
engine architecture.

In this book you will learn:

• how real industrial-strength production game engines are architected;

• how game development teams are organized andwork in the real world;

• which major subsystems and design patterns appear again and again in
virtually every game engine;

• the typical requirements for each major subsystem;

• which subsystems are genre- or game-agnostic, and which ones are typ-
ically designed explicitly for a specific genre or game; and

• where the engine normally ends and the game begins.

We’ll also get a first-hand glimpse into the inner workings of some popular
game engines, such as Quake, Unreal and Unity, and some well-known mid-
dleware packages, such as the Havok Physics library, the OGRE rendering en-
gine and Rad Game Tools’ Granny 3D animation and geometry management
toolkit. And we’ll explore a number of proprietary game engines that I’ve had
the pleasure to work with, including the engine Naughty Dog developed for
its Uncharted and The Last of Us game series.

Before we get started, we’ll review some techniques and tools for large-
scale software engineering in a game engine context, including:

• the difference between logical and physical software architecture;

• configuration management, revision control and build systems; and

• some tips and tricks for dealing with one of the common development
environments for C and C++, Microsoft Visual Studio.

In this book I assume that you have a solid understanding of C++ (the lan-
guage of choice among most modern game developers) and that you under-
stand basic software engineering principles. I also assume you have some

1.1. Structure of a Typical Game Team 5

exposure to linear algebra, three-dimensional vector and matrix math and
trigonometry (although we’ll review the core concepts in Chapter 5). Ideally,
you should have some prior exposure to the basic concepts of real time and
event-driven programming. But never fear—I will review these topics briefly,
and I’ll also point you in the right direction if you feel you need to hone your
skills further before we embark.

1.1 Structure of a Typical Game Team

Before we delve into the structure of a typical game engine, let’s first take a
brief look at the structure of a typical game development team. Game stu-
dios are usually composed of five basic disciplines: engineers, artists, game
designers, producers and other management and support staff (marketing,
legal, information technology/technical support, administrative, etc.). Each
discipline can be divided into various subdisciplines. We’ll take a brief look at
each below.

1.1.1 Engineers

The engineers design and implement the software that makes the game, and
the tools, work. Engineers are often categorized into two basic groups: runtime
programmers (whowork on the engine and the game itself) and tools program-
mers (who work on the offline tools that allow the rest of the development
team to work effectively). On both sides of the runtime/tools line, engineers
have various specialties. Some engineers focus their careers on a single en-
gine system, such as rendering, artificial intelligence, audio or collision and
physics. Some focus on gameplay programming and scripting, while others
prefer to work at the systems level and not get too involved in how the game
actually plays. Some engineers are generalists—jacks of all trades who can
jump around and tackle whatever problems might arise during development.

Senior engineers are sometimes asked to take on a technical leadership role.
Lead engineers usually still design and write code, but they also help to man-
age the team’s schedule, make decisions regarding the overall technical direc-
tion of the project, and sometimes also directly manage people from a human
resources perspective.

Some companies also have one or more technical directors (TD), whose job
it is to oversee one or more projects from a high level, ensuring that the teams
are aware of potential technical challenges, upcoming industry developments,
new technologies and so on. The highest engineering-related position at a
game studio is the chief technical officer (CTO), if the studio has one. The

6 1. Introduction

CTO’s job is to serve as a sort of technical director for the entire studio, as well
as serving a key executive role in the company.

1.1.2 Artists

As we say in the game industry, “Content is king.” The artists produce all of
the visual and audio content in the game, and the quality of their work can
literally make or break a game. Artists come in all sorts of flavors:

• Concept artistsproduce sketches andpaintings that provide the teamwith
a vision of what the final game will look like. They start their work early
in the concept phase of development, but usually continue to provide vi-
sual direction throughout a project’s life cycle. It is common for screen-
shots taken from a shipping game to bear an uncanny resemblance to the
concept art.

• 3D modelers produce the three-dimensional geometry for everything in
the virtual gameworld. This discipline is typically divided into two sub-
disciplines: foreground modelers and background modelers. The for-
mer create objects, characters, vehicles, weapons and the other objects
that populate the game world, while the latter build the world’s static
background geometry (terrain, buildings, bridges, etc.).

• Texture artists create the two-dimensional images known as textures,
which are applied to the surfaces of 3Dmodels in order to provide detail
and realism.

• Lighting artists lay out all of the light sources in the game world, both
static and dynamic, and work with color, intensity and light direction to
maximize the artfulness and emotional impact of each scene.

• Animators imbue the characters and objects in the game with motion.
The animators serve quite literally as actors in a game production, just as
they do in a CGfilmproduction. However, a game animatormust have a
unique set of skills in order to produce animations that mesh seamlessly
with the technological underpinnings of the game engine.

• Motion capture actors are often used to provide a rough set ofmotion data,
which are then cleaned up and tweaked by the animators before being
integrated into the game.

• Sound designers work closely with the engineers in order to produce and
mix the sound effects and music in the game.

1.1. Structure of a Typical Game Team 7

• Voice actors provide the voices of the characters in many games.

• Many games have one ormore composers, who compose an original score
for the game.

As with engineers, senior artists are often called upon to be team leaders.
Some game teams have one ormore art directors—very senior artists whoman-
age the look of the entire game and ensure consistency across the work of all
team members.

1.1.3 Game Designers

The game designers’ job is to design the interactive portion of the player’s ex-
perience, typically known as gameplay. Different kinds of designers work at
different levels of detail. Some (usually senior) game designers work at the
macro level, determining the story arc, the overall sequence of chapters or lev-
els, and the high-level goals and objectives of the player. Other designerswork
on individual levels or geographical areas within the virtual game world, lay-
ing out the static background geometry, determining where and when ene-
mies will emerge, placing supplies like weapons and health packs, designing
puzzle elements and so on. Still other designers operate at a highly technical
level, working closely with gameplay engineers and/or writing code (often in
a high-level scripting language). Some game designers are ex-engineers, who
decided they wanted to play a more active role in determining how the game
will play.

Some game teams employ one or more writers. A game writer’s job can
range from collaborating with the senior game designers to construct the story
arc of the entire game, to writing individual lines of dialogue.

As with other disciplines, some senior designers play management roles.
Many game teams have a game director, whose job it is to oversee all aspects
of a game’s design, help manage schedules, and ensure that the work of indi-
vidual designers is consistent across the entire product. Senior designers also
sometimes evolve into producers.

1.1.4 Producers

The role of producer is defined differently by different studios. In some game
companies, the producer’s job is tomanage the schedule and serve as a human
resources manager. In other companies, producers serve in a senior game de-
sign capacity. Still other studios ask their producers to serve as liaisons be-
tween the development team and the business unit of the company (finance,
legal, marketing, etc.). Some smaller studios don’t have producers at all. For

8 1. Introduction

example, at Naughty Dog, literally everyone in the company, including the
two co-presidents, plays a direct role in constructing the game; team man-
agement and business duties are shared between the senior members of the
studio.

1.1.5 Other Staff

The team of people who directly construct the game is typically supported by
a crucial team of support staff. This includes the studio’s executive manage-
ment team, the marketing department (or a team that liaises with an external
marketing group), administrative staff and the IT department, whose job is
to purchase, install and configure hardware and software for the team and to
provide technical support.

1.1.6 Publishers and Studios

The marketing, manufacture and distribution of a game title are usually han-
dled by a publisher, not by the game studio itself. A publisher is typically a
large corporation, like Electronic Arts, THQ, Vivendi, Sony, Nintendo, etc.
Many game studios are not affiliated with a particular publisher. They sell
each game that they produce to whichever publisher strikes the best deal with
them. Other studios work exclusively with a single publisher, either via a
long-term publishing contract or as a fully owned subsidiary of the publishing
company. For example, THQ’s game studios are independently managed, but
they are owned and ultimately controlled by THQ. Electronic Arts takes this
relationship one step further, by directly managing its studios. First-party de-
velopers are game studios owned directly by the console manufacturers (Sony,
Nintendo and Microsoft). For example, Naughty Dog is a first-party Sony de-
veloper. These studios produce games exclusively for the gaming hardware
manufactured by their parent company.

1.2 What Is a Game?

We probably all have a pretty good intuitive notion of what a game is. The
general term “game” encompasses board games like chess andMonopoly, card
games like poker and blackjack, casino games like roulette and slot machines,
military war games, computer games, various kinds of play among children,
and the list goes on. In academia we sometimes speak of game theory, in
which multiple agents select strategies and tactics in order to maximize their
gains within the framework of a well-defined set of game rules. When used
in the context of console or computer-based entertainment, the word “game”

1.2. What Is a Game? 9

usually conjures images of a three-dimensional virtual world featuring a hu-
manoid, animal or vehicle as the main character under player control. (Or
for the old geezers among us, perhaps it brings to mind images of two-
dimensional classics likePong, Pac-Man, orDonkeyKong.) In his excellent book,
ATheory of Fun forGameDesign, RaphKoster defines a game to be an interactive
experience that provides the player with an increasingly challenging sequence
of patterns which he or she learns and eventually masters [30]. Koster’s asser-
tion is that the activities of learning and mastering are at the heart of what we
call “fun,” just as a joke becomes funny at the moment we “get it” by recog-
nizing the pattern.

For the purposes of this book, we’ll focus on the subset of games that com-
prise two- and three-dimensional virtual worlds with a small number of play-
ers (between one and 16 or thereabouts). Much of what we’ll learn can also
be applied to HTML5/JavaScript games on the Internet, pure puzzle games
like Tetris, or massively multiplayer online games (MMOG). But our primary
focus will be on game engines capable of producing first-person shooters,
third-person action/platform games, racing games, fighting games and the
like.

1.2.1 Video Games as Soft Real-Time Simulations

Most two- and three-dimensional video games are examples ofwhat computer
scientists would call soft real-time interactive agent-based computer simulations.
Let’s break this phrase down in order to better understand what it means.

In most video games, some subset of the real world—or an imaginary
world—ismodeledmathematically so that it can bemanipulated by a computer.
The model is an approximation to and a simplification of reality (even if it’s
an imaginary reality), because it is clearly impractical to include every detail
down to the level of atoms or quarks. Hence, the mathematical model is a sim-
ulation of the real or imagined gameworld. Approximation and simplification
are two of the game developer’s most powerful tools. When used skillfully,
even a greatly simplified model can sometimes be almost indistinguishable
from reality—and a lot more fun.

An agent-based simulation is one in which a number of distinct entities
knownas “agents” interact. This fits the description ofmost three-dimensional
computer games very well, where the agents are vehicles, characters, fireballs,
power dots and so on. Given the agent-based nature of most games, it should
come as no surprise that most games nowadays are implemented in an object-
oriented, or at least loosely object-based, programming language.

10 1. Introduction

All interactive video games are temporal simulations, meaning that the vir-
tual game world model is dynamic—the state of the game world changes over
time as the game’s events and story unfold. Avideo gamemust also respond to
unpredictable inputs from its human player(s)—thus interactive temporal simu-
lations. Finally, most video games present their stories and respond to player
input in real time, making them interactive real-time simulations. One notable
exception is in the category of turn-based games like computerized chess or
turn-based strategy games. But even these types of games usually provide the
user with some form of real-time graphical user interface. So for the purposes
of this book, we’ll assume that all video games have at least some real-time
constraints.

At the core of every real-time system is the concept of a deadline. An ob-
vious example in video games is the requirement that the screen be updated
at least 24 times per second in order to provide the illusion of motion. (Most
games render the screen at 30 or 60 frames per second because these are multi-
ples of an NTSCmonitor’s refresh rate.) Of course, there are many other kinds
of deadlines in video games as well. A physics simulation may need to be up-
dated 120 times per second in order to remain stable. A character’s artificial
intelligence system may need to “think” at least once every second to prevent
the appearance of stupidity. The audio library may need to be called at least
once every 1/60 second in order to keep the audio buffers filled and prevent
audible glitches.

A “soft” real-time system is one in which missed deadlines are not catas-
trophic. Hence, all video games are soft real-time systems—if the frame rate dies,
the human player generally doesn’t! Contrast this with a hard real-time system,
in which a missed deadline could mean severe injury to or even the death of a
human operator. The avionics system in a helicopter or the control-rod system
in a nuclear power plant are examples of hard real-time systems.

Mathematicalmodels can be analytic or numerical. For example, the analytic
(closed-form) mathematical model of a rigid body falling under the influence
of constant acceleration due to gravity is typically written as follows:

y(t) =
1
2

gt2 + v0t + y0. (1.1)

An analytic model can be evaluated for any value of its independent variables,
such as the time t in the above equation, given only the initial conditions v0
and y0 and the constant g. Such models are very convenient when they can be
found. However, many problems in mathematics have no closed-form solu-
tion. And in video games, where the user’s input is unpredictable, we cannot
hope to model the entire game analytically.

A numerical model of the same rigid body under gravity can be expressed

1.3. What Is a Game Engine? 11

as follows:

y(t + ∆t) = F(y(t), ẏ(t), ÿ(t), . . .). (1.2)

That is, the height of the rigid body at some future time (t + ∆t) can be found
as a function of the height and its first, second, and possibly higher-order time
derivatives at the current time t. Numerical simulations are typically imple-
mented by running calculations repeatedly, in order to determine the state of
the system at each discrete time step. Games work in the same way. A main
“game loop” runs repeatedly, and during each iteration of the loop, various
game systems such as artificial intelligence, game logic, physics simulations
and so on are given a chance to calculate or update their state for the next
discrete time step. The results are then “rendered” by displaying graphics,
emitting sound and possibly producing other outputs such as force-feedback
on the joypad.

1.3 What Is a Game Engine?

The term “game engine” arose in the mid-1990s in reference to first-person
shooter (FPS) games like the insanely popular Doom by id Software. Doom
was architected with a reasonably well-defined separation between its core
software components (such as the three-dimensional graphics rendering sys-
tem, the collision detection system or the audio system) and the art assets,
gameworlds and rules of play that comprised the player’s gaming experience.
The value of this separation became evident as developers began licensing
games and retooling them into new products by creating new art, world lay-
outs, weapons, characters, vehicles and game ruleswith onlyminimal changes
to the “engine” software. This marked the birth of the “mod community”—
a group of individual gamers and small independent studios that built new
games by modifying existing games, using free toolkits provided by the orig-
inal developers.

Towards the end of the 1990s, some games like Quake III Arena and Unreal
were designedwith reuse and “modding” inmind. Enginesweremade highly
customizable via scripting languages like id’s Quake C, and engine licensing
began to be a viable secondary revenue stream for the developers who created
them. Today, game developers can license a game engine and reuse significant
portions of its key software components in order to build games. While this
practice still involves considerable investment in custom software engineer-
ing, it can be much more economical than developing all of the core engine
components in-house.

12 1. Introduction

Can be “modded” to
build any game in a

specific genre
Can be used to build any

game imaginable
Cannot be used to build

more than one game
Can be customized to

make very similar games

Unity,
Unreal Engine 4,
Source Engine, ...

Hydro Thunder
Engine

Probably
impossible

PacMan
Quake III
Engine

Figure 1.1. Game engine reusability gamut.

The line between a game and its engine is often blurry. Some engines make
a reasonably clear distinction, while others make almost no attempt to sepa-
rate the two. In one game, the rendering code might “know” specifically how
to draw an orc. In another game, the rendering engine might provide general-
purpose material and shading facilities, and “orc-ness” might be defined en-
tirely in data. No studio makes a perfectly clear separation between the game
and the engine, which is understandable considering that the definitions of
these two components often shift as the game’s design solidifies.

Arguably a data-driven architecture is what differentiates a game engine
from a piece of software that is a game but not an engine. When a game
contains hard-coded logic or game rules, or employs special-case code to ren-
der specific types of game objects, it becomes difficult or impossible to reuse
that software to make a different game. We should probably reserve the term
“game engine” for software that is extensible and can be used as the founda-
tion for many different games without major modification.

Clearly this is not a black-and-white distinction. We can think of a gamut
of reusability onto which every engine falls. Figure 1.1 takes a stab at the lo-
cations of some well-known games/engines along this gamut.

One would think that a game engine could be something akin to Apple
QuickTime or Microsoft Windows Media Player—a general-purpose piece of
software capable of playing virtually any game content imaginable. However,
this ideal has not yet been achieved (and may never be). Most game engines
are carefully crafted and fine-tuned to run a particular game on a particular
hardware platform. And even the most general-purpose multiplatform en-
gines are really only suitable for building games in one particular genre, such
as first-person shooters or racing games. It’s safe to say that the more general-
purpose a game engine or middleware component is, the less optimal it is for
running a particular game on a particular platform.

This phenomenon occurs because designing any efficient piece of soft-
ware invariably entails making trade-offs, and those trade-offs are based on
assumptions about how the software will be used and/or about the target

1.4. Engine Differences across Genres 13

hardware on which it will run. For example, a rendering engine that was de-
signed to handle intimate indoor environments probably won’t be very good
at rendering vast outdoor environments. The indoor engine might use a bi-
nary space partitioning (BSP) tree or portal system to ensure that no geometry
is drawn that is being occluded bywalls or objects that are closer to the camera.
The outdoor engine, on the other hand, might use a less-exact occlusionmech-
anism, or none at all, but it probably makes aggressive use of level-of-detail
(LOD) techniques to ensure that distant objects are rendered with a minimum
number of triangles, while using high-resolution trianglemeshes for geometry
that is close to the camera.

The advent of ever-faster computer hardware and specialized graphics
cards, along with ever-more-efficient rendering algorithms and data struc-
tures, is beginning to soften the differences between the graphics engines of
different genres. It is now possible to use a first-person shooter engine to build
a strategy game, for example. However, the trade-off between generality and
optimality still exists. A game can always be made more impressive by fine-
tuning the engine to the specific requirements and constraints of a particular
game and/or hardware platform.

1.4 Engine Differences across Genres

Game engines are typically somewhat genre specific. An engine designed for
a two-person fighting game in a boxing ring will be very different from amas-
sivelymultiplayer online game (MMOG) engine or a first-person shooter (FPS)
engine or a real-time strategy (RTS) engine. However, there is also a great deal
of overlap—all 3D games, regardless of genre, require some form of low-level
user input from the joypad, keyboard and/or mouse, some form of 3D mesh
rendering, some form of heads-up display (HUD) including text rendering in
a variety of fonts, a powerful audio system, and the list goes on. So while
the Unreal Engine, for example, was designed for first-person shooter games,
it has been used successfully to construct games in a number of other genres
as well, including the wildly popular third-person shooter franchise Gears of
War by Epic Games, the hit action-adventure games in the Batman: Arkham se-
ries by Rocksteady Studios, the well-known fighting game Tekken 7 by Bandai
Namco Studios, and the first three role-playing third-person shooter games in
the Mass Effect series by BioWare.

Let’s take a look at some of the most common game genres and explore
some examples of the technology requirements particular to each.

14 1. Introduction

Figure 1.2. Overwatch by Blizzard Entertainment (Xbox One, PlayStation 4, Windows). (See Color
Plate I.)

1.4.1 First-Person Shooters (FPS)

The first-person shooter (FPS) genre is typified by games like Quake, Un-
real Tournament, Half-Life, Battlefield, Destiny, Titanfall and Overwatch (see Fig-
ure 1.2). These games have historically involved relatively slow on-foot roam-
ing of a potentially large but primarily corridor-based world. However, mod-
ern first-person shooters can take place in a wide variety of virtual environ-
ments including vast open outdoor areas and confined indoor areas. Modern
FPS traversal mechanics can include on-foot locomotion, rail-confined or free-
roaming ground vehicles, hovercraft, boats and aircraft. For an overview of
this genre, see http://en.wikipedia.org/wiki/First-person_shooter.

First-person games are typically some of themost technologically challeng-
ing to build, probably rivaled in complexity only by third-person shooters,
action-platformer games, and massively multiplayer games. This is because
first-person shooters aim to provide their players with the illusion of being
immersed in a detailed, hyperrealistic world. It is not surprising that many of
the game industry’s big technological innovations arose out of the games in
this genre.

First-person shooters typically focus on technologies such as:

• efficient rendering of large 3D virtual worlds;

1.4. Engine Differences across Genres 15

• a responsive camera control/aiming mechanic;

• high-fidelity animations of the player’s virtual arms and weapons;

• a wide range of powerful handheld weaponry;

• a forgiving player character motion and collision model, which often
gives these games a “floaty” feel;

• high-fidelity animations and artificial intelligence for the non-player
characters (NPCs)—the player’s enemies and allies; and

• small-scale online multiplayer capabilities (typically supporting be-
tween 10 and 100 simultaneous players), and the ubiquitous “death
match” gameplay mode.

The rendering technology employed by first-person shooters is almost al-
ways highly optimized and carefully tuned to the particular type of environ-
ment being rendered. For example, indoor “dungeon crawl” games often em-
ploy binary space partitioning trees or portal-based rendering systems. Out-
door FPS games use other kinds of rendering optimizations such as occlusion
culling, or an offline sectorization of the game world with manual or auto-
mated specification of which target sectors are visible from each source sector.

Of course, immersing a player in a hyperrealistic game world requires
muchmore than just optimized high-quality graphics technology. The charac-
ter animations, audio and music, rigid body physics, in-game cinematics and
myriad other technologies must all be cutting-edge in a first-person shooter.
So this genre has some of the most stringent and broad technology require-
ments in the industry.

1.4.2 Platformers and Other Third-Person Games

“Platformer” is the term applied to third-person character-based action games
where jumping from platform to platform is the primary gameplay mechanic.
Typical games from the 2D era include Space Panic, Donkey Kong, Pitfall! and
Super Mario Brothers. The 3D era includes platformers like Super Mario 64,
Crash Bandicoot, Rayman 2, Sonic the Hedgehog, the Jak and Daxter series (Fig-
ure 1.3), the Ratchet & Clank series and Super Mario Galaxy. See http://en.
wikipedia.org/wiki/Platformer for an in-depth discussion of this genre.

In terms of their technological requirements, platformers can usually be
lumped together with third-person shooters and third-person action/adven-
ture games like Just Cause 2, Gears of War 4 (Figure 1.4), the Uncharted series,
the Resident Evil series, the The Last of Us series, Red Dead Redemption 2, and the
list goes on.

16 1. Introduction

Third-person character-based games have a lot in common with first-per-
son shooters, but a great deal more emphasis is placed on the main character’s
abilities and locomotion modes. In addition, high-fidelity full-body charac-
ter animations are required for the player’s avatar, as opposed to the some-
what less-taxing animation requirements of the “floating arms” in a typical
FPS game. It’s important to note here that almost all first-person shooters have
an online multiplayer component, so a full-body player avatar must be ren-
dered in addition to the first-person arms. However, the fidelity of these FPS
player avatars is usually not comparable to the fidelity of the non-player char-
acters in these same games; nor can it be compared to the fidelity of the player
avatar in a third-person game.

In a platformer, themain character is often cartoon-like and not particularly
realistic or high-resolution. However, third-person shooters often feature a
highly realistic humanoid player character. In both cases, the player character
typically has a very rich set of actions and animations.

Some of the technologies specifically focused on by games in this genre
include:

Figure 1.3. Jak II by Naughty Dog (Jak, Daxter, Jak and Daxter, and Jak II © 2003, 2013/™ SIE. Created
and developed by Naughty Dog, PlayStation 2.) (See Color Plate II.)

1.4. Engine Differences across Genres 17

Figure 1.4. Gears of War 4 by The Coalition (Xbox One). (See Color Plate III.)

• moving platforms, ladders, ropes, trellises and other interesting locomo-
tion modes;

• puzzle-like environmental elements;

• a third-person “follow camera” which stays focused on the player char-
acter and whose rotation is typically controlled by the human player via
the right joypad stick (on a console) or the mouse (on a PC—note that
while there are a number of popular third-person shooters on a PC, the
platformer genre exists almost exclusively on consoles); and

• a complex camera collision system for ensuring that the viewpoint never
“clips” through background geometry or dynamic foreground objects.

1.4.3 Fighting Games

Fighting games are typically two-player games involving humanoid charac-
ters pummeling each other in a ring of some sort. The genre is typified by
games like Soul Calibur and Tekken 3 (see Figure 1.5). The Wikipedia page
http://en.wikipedia.org/wiki/Fighting_game provides an overview of this
genre.

Traditionally games in the fighting genre have focused their technology
efforts on:

18 1. Introduction

• a rich set of fighting animations;
• accurate hit detection;
• a user input system capable of detecting complex button and joystick

combinations; and
• crowds, but otherwise relatively static backgrounds.

Since the 3D world in these games is small and the camera is centered
on the action at all times, historically these games have had little or no need
for world subdivision or occlusion culling. They would likewise not be ex-
pected to employ advanced three-dimensional audio propagation models, for
example.

Modern fighting games like EA’s Fight Night Round 4 and NetherRealm
Studios’ Injustice 2 (Figure 1.6) have upped the technological antewith features
like:

• high-definition character graphics;
• realistic skin shaders with subsurface scattering and sweat effects;
• photo-realistic lighting and particle effects;
• high-fidelity character animations; and

Figure 1.5. Tekken 3 by Namco (PlayStation). (See Color Plate IV.)

1.4. Engine Differences across Genres 19

• physics-based cloth and hair simulations for the characters.

It’s important to note that some fighting games like Ninja Theory’s Heav-
enly Sword and For Honor byUbisoftMontreal take place in a large-scale virtual
world, not a confined arena. In fact, many people consider this to be a separate
genre, sometimes called a brawler. This kind of fighting game can have tech-
nical requirements more akin to those of a third-person shooter or a strategy
game.

1.4.4 Racing Games

The racing genre encompasses all games whose primary task is driving a
car or other vehicle on some kind of track. The genre has many subcat-
egories. Simulation-focused racing games (“sims”) aim to provide a driv-
ing experience that is as realistic as possible (e.g., Gran Turismo). Arcade
racers favor over-the-top fun over realism (e.g., San Francisco Rush, Cruis’n
USA, Hydro Thunder). One subgenre explores the subculture of street rac-
ing with tricked out consumer vehicles (e.g., Need for Speed, Juiced). Kart
racing is a subcategory in which popular characters from platformer games
or cartoon characters from TV are re-cast as the drivers of whacky vehicles
(e.g., Mario Kart, Jak X, Freaky Flyers). Racing games need not always in-
volve time-based competition. Some kart racing games, for example, offer

Figure 1.6. Injustice 2 by NetherRealm Studios (PlayStation 4, Xbox One, Android, iOS, Microsoft
Windows). (See Color Plate V.)

20 1. Introduction

Figure 1.7. Gran Turismo Sport by Polyphony Digital (PlayStation 4). (See Color Plate VI.)

modes in which players shoot at one another, collect loot or engage in a va-
riety of other timed and untimed tasks. For a discussion of this genre, see
http://en.wikipedia.org/wiki/Racing_game.

A racing game is often very linear, much like older FPS games. However,
travel speed is generally much faster than in an FPS. Therefore, more focus is
placed on very long corridor-based tracks, or looped tracks, sometimes with
various alternate routes and secret short-cuts. Racing games usually focus all
their graphic detail on the vehicles, track and immediate surroundings. As an
example of this, Figure 1.7 shows a screenshot from the latest installment in the
well-known Gran Turismo racing game series, Gran Turismo Sport, developed
by PolyphonyDigital and published by Sony Interactive Entertainment. How-
ever, kart racers also devote significant rendering and animation bandwidth
to the characters driving the vehicles.

Some of the technological properties of a typical racing game include the
following techniques:

• Various “tricks” are used when rendering distant background elements,
such as employing two-dimensional cards for trees, hills andmountains.

• The track is often broken down into relatively simple two-dimensional
regions called “sectors.” These data structures are used to optimize ren-
dering and visibility determination, to aid in artificial intelligence and
pathfinding for non-human-controlled vehicles, and to solvemanyother
technical problems.

• The camera typically follows behind the vehicle for a third-person per-

1.4. Engine Differences across Genres 21

Figure 1.8. Age of Empires by Ensemble Studios (Windows). (See Color Plate VII.)

spective, or is sometimes situated inside the cockpit first-person style.

• When the track involves tunnels and other “tight” spaces, a good deal
of effort is often put into ensuring that the camera does not collide with
background geometry.

1.4.5 Strategy Games

Themodern strategy gamegenrewas arguably defined byDune II: The Building
of a Dynasty (1992). Other games in this genre include Warcraft, Command &
Conquer,Age of Empires and Starcraft. In this genre, the player deploys the battle
units in his or her arsenal strategically across a large playing field in an attempt
to overwhelm his or her opponent. The game world is typically displayed
at an oblique top-down viewing angle. A distinction is often made between
turn-based strategy games and real-time strategy (RTS). For a discussion of
this genre, see https://en.wikipedia.org/wiki/Strategy_video_game.

The strategy game player is usually prevented from significantly changing
the viewing angle in order to see across large distances. This restriction per-
mits developers to employ various optimizations in the rendering engine of a
strategy game.

22 1. Introduction

Figure 1.9. Total War: Warhammer 2 by Creative Assembly (Windows). (See Color Plate VIII.)

Older games in the genre employed a grid-based (cell-based) world con-
struction, and an orthographic projection was used to greatly simplify the ren-
derer. For example, Figure 1.8 shows a screenshot from the classic strategy
game Age of Empires.

Modern strategy games sometimes use perspective projection and a true
3D world, but they may still employ a grid layout system to ensure that units
and background elements, such as buildings, align with one another properly.
A popular example, Total War: Warhammer 2, is shown in Figure 1.9.

Some other common practices in strategy games include the following
techniques:

• Each unit is relatively low-res, so that the game can support large num-
bers of them on-screen at once.

• Height-field terrain is usually the canvas upon which the game is de-
signed and played.

• The player is often allowed to build new structures on the terrain in ad-
dition to deploying his or her forces.

• User interaction is typically via single-click and area-based selection of
units, plus menus or toolbars containing commands, equipment, unit
types, building types, etc.

1.4. Engine Differences across Genres 23

Figure 1.10. World of Warcraft by Blizzard Entertainment (Windows, MacOS). (See Color Plate IX.)

1.4.6 Massively Multiplayer Online Games (MMOG)

The massively multiplayer online game (MMOG or just MMO) genre is typ-
ified by games like Guild Wars 2 (AreaNet/NCsoft), EverQuest (989 Studios/
SOE),World of Warcraft (Blizzard) and Star Wars Galaxies (SOE/Lucas Arts), to
name a few. An MMO is defined as any game that supports huge numbers
of simultaneous players (from thousands to hundreds of thousands), usually
all playing in one very large, persistent virtual world (i.e., a world whose in-
ternal state persists for very long periods of time, far beyond that of any one
player’s gameplay session). Otherwise, the gameplay experience of an MMO
is often similar to that of their small-scale multiplayer counterparts. Subcate-
gories of this genre includeMMO role-playing games (MMORPG),MMO real-
time strategy games (MMORTS) and MMO first-person shooters (MMOFPS).
For a discussion of this genre, see http://en.wikipedia.org/wiki/MMOG. Fig-
ure 1.10 shows a screenshot from the hugely popular MMORPGWorld of War-
craft.

At the heart of all MMOGs is a very powerful battery of servers. These
serversmaintain the authoritative state of the gameworld, manage users sign-
ing in and out of the game, provide inter-user chat or voice-over-IP (VoIP) ser-
vices and more. Almost all MMOGs require users to pay some kind of regular

24 1. Introduction

subscription fee in order to play, and theymay offer micro-transactions within
the game world or out-of-game as well. Hence, perhaps the most important
role of the central server is to handle the billing and micro-transactions which
serve as the game developer’s primary source of revenue.

Graphics fidelity in anMMO is almost always lower than its non-massively
multiplayer counterparts, as a result of the huge world sizes and extremely
large numbers of users supported by these kinds of games.

Figure 1.11 shows a screen from Bungie’s latest FPS game, Destiny 2. This
game has been called an MMOFPS because it incorporates some aspects of
the MMO genre. However, Bungie prefers to call it a “shared world” game
because unlike a traditional MMO, in which a player can see and interact with
literally any other player on a particular server, Destiny provides “on-the-fly
match-making.” This permits the player to interact onlywith the other players
with whom they have been matched by the server; this matchmaking system
has been significantly improved forDestiny 2. Also unlike a traditional MMO,
the graphics fidelity inDestiny 2 is on parwith first- and third-person shooters.

We should note here that the game Player Unknown’s Battlegrounds (PUBG)
has recently popularized a subgenre known as battle royale. This type of game
blurs the line between regularmultiplayer shooters andmassivelymultiplayer
online games, because they typically pit on the order of 100 players against
each other in an onlineworld, employing a survival-based “lastman standing”
gameplay style.

Figure 1.11. Destiny 2 by Bungie, © 2018 Bungie Inc. (Xbox One, PlayStation 4, PC) (See Color Plate X.)

1.4. Engine Differences across Genres 25

1.4.7 Player-Authored Content

As social media takes off, games are becoming more and more collaborative
in nature. A recent trend in game design is toward player-authored content. For
example, Media Molecule’s LittleBigPlanet,™ LittleBigPlanet™ 2 (Figure 1.12)
and LittleBigPlanet™ 3: The Journey Home are technically puzzle platformers, but
their most notable and unique feature is that they encourage players to create,
publish and share their own gameworlds. MediaMolecule’s latest installment
in this engaging genre is Dreams for the PlayStation 4 (Figure 1.13).

Perhaps the most popular game today in the player-created content genre
is Minecraft (Figure 1.14). The brilliance of this game lies in its simplicity:
Minecraft game worlds are constructed from simple cubic voxel-like elements
mapped with low-resolution textures to mimic various materials. Blocks can
be solid, or they can contain items such as torches, anvils, signs, fences and
panes of glass. The game world is populated with one or more player charac-
ters, animals such as chickens and pigs, and various “mobs”—good guys like
villagers and bad guys like zombies and the ubiquitous creeperswho sneak up
on unsuspecting players and explode (only scant moments after warning the
player with the “hiss” of a burning fuse).

Players can create a randomized world in Minecraft and then dig into the
generated terrain to create tunnels and caverns. They can also construct their
own structures, ranging from simple terrain and foliage to vast and complex

Figure 1.12. LittleBigPlanet™ 2 by Media Molecule, © 2014 Sony Interactive Entertainment (PlaySta-
tion 3). (See Color Plate XI.)

26 1. Introduction

Figure 1.13. Dreams by Media Molecule, © 2017 Sony Computer Computer Europe (PlayStation 4).
(See Color Plate XII.)

buildings and machinery. Perhaps the biggest stroke of genius in Minecraft
is redstone. This material serves as “wiring,” allowing players to lay down
circuitry that controls pistons, hoppers, mine carts and other dynamic ele-
ments in the game. As a result, players can create virtually anything they can
imagine, and then share their worldswith their friends by hosting a server and
inviting them to play online.

Figure 1.14. Minecraft byMarkus “Notch” Persson /MojangAB (Windows, MacOS, Xbox 360, PlaySta-
tion 3, PlayStation Vita, iOS). (See Color Plate XIII.)

1.4. Engine Differences across Genres 27

1.4.8 Virtual, Augmented and Mixed Reality

Virtual, augmented and mixed reality are exciting new technologies that aim
to immerse the viewer in a 3Dworld that is either entirely generated by a com-
puter, or is augmented by computer-generated imagery. These technologies
have many applications outside the game industry, but they have also become
viable platforms for a wide range of gaming content.

1.4.8.1 Virtual Reality

Virtual reality (VR) can be defined as an immersive multimedia or computer-
simulated reality that simulates the user’s presence in an environment that is
either a place in the real world or in an imaginaryworld. Computer-generated
VR (CG VR) is a subset of this technology in which the virtual world is exclu-
sively generated via computer graphics. The user views this virtual environ-
ment by donning a headset such as HTC Vive, Oculus Rift, Sony PlayStation
VR, Samsung Gear VR or Google Daydream View. The headset displays the
content directly in front of the user’s eyes; the system also tracks the move-
ment of the headset in the real world, so that the virtual camera’s movements
can be perfectly matched to those of the person wearing the headset. The user
typically holds devices in his or her hands which allow the system to track the
movements of each hand. This allows the user to interact in the virtual world:
Objects can be pushed, picked up or thrown, for example.

1.4.8.2 Augmented and Mixed Reality

The terms augmented reality (AR) and mixed reality (MR) are often confused
or used interchangeably. Both technologies present the user with a view of
the real world, but with computer graphics used to enhance the experience.
In both technologies, a viewing device like a smart phone, tablet or tech-
enhanced pair of glasses displays a real-time or static view of a real-world
scene, and computer graphics are overlaid on top of this image. In real-time
AR and MR systems, accelerometers in the viewing device permit the virtual
camera’s movements to track the movements of the device, producing the il-
lusion that the device is simply a window through which we are viewing the
actual world, and hence giving the overlaid computer graphics a strong sense
of realism.

Some people make a distinction between these two technologies by us-
ing the term “augmented reality” to describe technologies in which computer
graphics are overlaid on a live, direct or indirect view of the real world, but are
not anchored to it. The term “mixed reality,” on the other hand, is more often

28 1. Introduction

applied to the use of computer graphics to render imaginary objects which
are anchored to the real world and appear to exist within it. However, this
distinction is by no means universally accepted.

Here are a few examples of AR technology in action:

• The U.S. Army provides its soldiers with improved tactical awareness
using a system dubbed “tactical augmented reality” (TAR)—it overlays
a video-game-like heads-up display (HUD) complete with a mini-map
and object markers onto the soldier’s view of the real world (https://
youtu.be/x8p19j8C6VI).

• In 2015, Disney demonstrated some cool AR technology that renders a
3D cartoon character on top of a sheet of real-world paper on which a
2D version of the character is colored with a crayon (https://youtu.be/
SWzurBQ81CM).

• PepsiCo also pranked commuting Londoners with an AR-enabled bus
stop. People sitting in the bus stop enclosure were treated to AR images
of a prowling tiger, a meteor crashing, and an alien tentacle grabbing
unwitting passers by off the street (https://youtu.be/Go9rf9GmYpM).

And here are a few examples of MR:

• Starting with Android 8.1, the camera app on the Pixel 1 and Pixel 2
supports AR Stickers, a fun feature that allows users to place animated
3D objects and characters into videos and photos.

• Microsoft’s HoloLens is another example of mixed reality. It overlays
world-anchored graphics onto a live video image, and can be used for a
wide range of applications including education and training, engineer-
ing, health care, and entertainment.

1.4.8.3 VR/AR/MR Games

The game industry is currently experimenting with VR and AR/MR technolo-
gies, and is trying to find its footing within these newmedia. Some traditional
3D games have been “ported” to VR, yielding very interesting, if not particu-
larly innovative, experiences. But perhaps more exciting, entirely new game
genres are starting to emerge, offering gameplay experiences that could not be
achieved without VR or AR/MR.

For example, Job Simulator by Owlchemy Labs plunges the user into a vir-
tual job museum run by robots, and asks them to perform tongue-in-cheek
approximations of various real-world jobs, making use of game mechanics

1.4. Engine Differences across Genres 29

that simply wouldn’t work on a non-VR platform. Owlchemy’s next install-
ment, Vacation Simulator, applies the same whimsical sense of humour and art
style to a world in which the robots of Job Simulator invite the player to relax
and perform various tasks. Figure 1.15 shows a screenshot from another in-
novative (and somewhat disturbing!) game for HTC Vive called Accounting,
from the creators of “Rick & Morty” and The Stanley Parable.

1.4.8.4 VR Game Engines

VR game engines are technologically similar in many respects to first-person
shooter engines, and in fact many FPS-capable engines such as Unity and Un-
real Engine support VR “out of the box.” However, VR games differ from FPS
games in a number of significant ways:

• Stereoscopic rendering. A VR game needs to render the scene twice, once
for each eye. This doubles the number of graphics primitives that must
be rendered, although other aspects of the graphics pipeline such as vis-
ibility culling can be performed only once per frame, since the eyes are
reasonably close together. As such, a VR game isn’t quite as expensive to
render as the same game would be to render in split-screen multiplayer
mode, but the principle of rendering each frame twice from two (slightly)
different virtual cameras is the same.

• Very high frame rate. Studies have shown that VR running at below 90

Figure 1.15. Accounting by Squanchtendo and Crows Crows Crows (HTC Vive). (See Color Plate XIV.)

30 1. Introduction

frames per second is likely to induce disorientation, nausea, and other
negative user effects. This means that not only do VR systems need to
render the scene twice per frame, they need to do so at 90+ FPS. This is
why VR games and applications are generally required to run on high-
powered CPU and GPU hardware.

• Navigation issues. In an FPS game, the player can simply walk around
the game world with the joypad or the WASD keys. In a VR game, a
small amount of movement can be realized by the user physically walk-
ing around in the real world, but the safe physical play area is typically
quite small (the size of a small bathroom or closet). Travelling by “fly-
ing” tends to induce nausea as well, so most games opt for a point-and-
click teleportation mechanism to move the virtual player/camera across
larger distances. Various real-world devices have also been conceived
that allow a VR user to “walk” in place with their feet in order to move
around in a VR world.

Of course, VR makes up for these limitations somewhat by enabling new user
interaction paradigms that aren’t possible in traditional video games. For ex-
ample,

• users can reach in the real world to touch, pick up and throw objects in
the virtual world;

• a player can dodge an attack in the virtual world by dodging physically
in the real world;

• new user interface opportunities are possible, such as having floating
menus attached to one’s virtual hands, or seeing a game’s credits written
on a whiteboard in the virtual world;

• a player can even pick up a pair of virtual VR goggles and place them
onto his or her head, thereby transporting them into a “nested” VR
world—an effect that might best be called “VR-ception.”

1.4.8.5 Location-Based Entertainment

Games like Pokémon Go neither overlay graphics onto an image of the real
world, nor do they generate a completely immersive virtual world. However,
the user’s view of the computer-generated world of Pokémon Go does react
to movements of the user’s phone or tablet, much like a 360-degree video.
And the game is aware of your actual location in the real world, prompting
you to go searching for Pokémon in nearby parks, malls and restaurants. This
kind of game can’t really be called AR/MR, but neither does it fall into the VR
category. Such a game might be better described as a form of location-based

1.5. Game Engine Survey 31

entertainment, although some people do use the ARmoniker for these kinds of
games.

1.4.9 Other Genres

There are of course many other game genres which we won’t cover in depth
here. Some examples include:

• sports, with subgenres for each major sport (football, baseball, soccer,
golf, etc.);

• role-playing games (RPG);

• God games, like Populous and Black & White;

• environmental/social simulation games, like SimCity or The Sims;

• puzzle games like Tetris;

• conversions of non-electronic games, like chess, card games, go, etc.;

• web-based games, such as those offered at Electronic Arts’ Pogo site;

and the list goes on.
We have seen that each game genre has its own particular technological re-

quirements. This explains why game engines have traditionally differed quite
a bit from genre to genre. However, there is also a great deal of technologi-
cal overlap between genres, especially within the context of a single hardware
platform. With the advent of more and more powerful hardware, differences
between genres that arose because of optimization concerns are beginning to
evaporate. It is therefore becoming increasingly possible to reuse the same en-
gine technology across disparate genres, and even across disparate hardware
platforms.

1.5 Game Engine Survey

1.5.1 The Quake Family of Engines

The first 3D first-person shooter (FPS) game is generally accepted to be Castle
Wolfenstein 3D (1992). Written by id Software of Texas for the PC platform, this
game led the game industry in a new and exciting direction. id Software went
on to create Doom, Quake, Quake II and Quake III. All of these engines are very
similar in architecture, and I will refer to them as the Quake family of engines.
Quake technology has been used to create many other games and even other
engines. For example, the lineage of Medal of Honor for the PC platform goes
something like this:

32 1. Introduction

• Quake III (id Software);

• Sin (Ritual);

• F.A.K.K. 2 (Ritual);

• Medal of Honor: Allied Assault (2015 & Dreamworks Interactive); and

• Medal of Honor: Pacific Assault (Electronic Arts, Los Angeles).

Many other games based on Quake technology follow equally circuitous
paths through many different games and studios. In fact, Valve’s Source en-
gine (used to create the Half-Life games) also has distant roots in Quake tech-
nology.

The Quake and Quake II source code is freely available, and the original
Quake engines are reasonably well architected and “clean” (although they are
of course a bit outdated and written entirely in C). These code bases serve
as great examples of how industrial-strength game engines are built. The
full source code to Quake and Quake II is available at https://github.com/
id-Software/Quake-2.

If you own the Quake and/or Quake II games, you can actually build the
code using Microsoft Visual Studio and run the game under the debugger us-
ing the real game assets from the disk. This can be incredibly instructive. You
can set breakpoints, run the game and then analyze how the engine actually
works by stepping through the code. I highly recommend downloading one
or both of these engines and analyzing the source code in this manner.

1.5.2 Unreal Engine

Epic Games, Inc. burst onto the FPS scene in 1998 with its legendary gameUn-
real. Since then, the Unreal Engine has become a major competitor to Quake
technology in the FPS space. Unreal Engine 2 (UE2) is the basis for Unreal
Tournament 2004 (UT2004) and has been used for countless “mods,” univer-
sity projects and commercial games. Unreal Engine 4 (UE4) is the latest evolu-
tionary step, boasting some of the best tools and richest engine feature sets in
the industry, including a convenient and powerful graphical user interface for
creating shaders and a graphical user interface for game logic programming
called Blueprints (previously known as Kismet).

The Unreal Engine has become known for its extensive feature set and co-
hesive, easy-to-use tools. The Unreal Engine is not perfect, and most devel-
opers modify it in various ways to run their game optimally on a particular
hardware platform. However, Unreal is an incredibly powerful prototyping
tool and commercial game development platform, and it can be used to build
virtually any 3D first-person or third-person game (not to mention games in

1.5. Game Engine Survey 33

other genres as well). Many exciting games in all sorts of genres have been
developed with UE4, including Rime by Tequila Works, Genesis: Alpha One by
Radiation Blue,AWayOut byHazelight Studios, andCrackdown 3 byMicrosoft
Studios.

The Unreal Developer Network (UDN) provides a rich set of documenta-
tion and other information about all released versions of the Unreal Engine
(see http://udn.epicgames.com/Main/WebHome.html). Some documenta-
tion is freely available. However, access to the full documentation for the latest
version of the Unreal Engine is generally restricted to licensees of the engine.
There are plenty of other useful websites and wikis that cover the Unreal En-
gine. One popular one is http://www.beyondunreal.com.

Thankfully, Epic now offers full access to Unreal Engine 4, source code and
all, for a low monthly subscription fee plus a cut of your game’s profits if it
ships. This makes UE4 a viable choice for small independent game studios.

1.5.3 The Half-Life Source Engine

Source is the game engine that drives thewell-knownHalf-Life 2 and its sequels
HL2: Episode One andHL2: Episode Two, Team Fortress 2 and Portal (shipped to-
gether under the title The Orange Box). Source is a high-quality engine, rivaling
Unreal Engine 4 in terms of graphics capabilities and tool set.

1.5.4 DICE’s Frostbite

The Frostbite engine grew out of DICE’s efforts to create a game engine for Bat-
tlefield Bad Company in 2006. Since then, the Frostbite engine has become the
most widely adopted engine within Electronic Arts (EA); it is used bymany of
EA’s key franchises includingMass Effect, Battlefield,Need for Speed,DragonAge,
and Star Wars Battlefront II. Frostbite boasts a powerful unified asset creation
tool called FrostEd, a powerful tools pipeline known as Backend Services, and
a powerful runtime game engine. It is a proprietary engine, so it’s unfortu-
nately unavailable for use by developers outside EA.

1.5.5 Rockstar Advanced Game Engine (RAGE)

RAGE is the engine that drives the insanely popular Grand Theft Auto V. De-
veloped by RAGE Technology Group, a division of Rockstar Games’ Rockstar
San Diego studio, RAGE has been used by Rockstar Games’ internal studios to
develop games for PlayStation 4, Xbox One, PlayStation 3, Xbox 360, Wii, Win-
dows, andMacOS. Other games developed on this proprietary engine include
Grand Theft Auto IV, Red Dead Redemption and Max Payne 3.

34 1. Introduction

1.5.6 CRYENGINE

Crytek originally developed their powerful game engine known as CRYEN-
GINE as a tech demo for NVIDIA. When the potential of the technology was
recognized, Crytek turned the demo into a complete game and Far Cry was
born. Since then, many games have been made with CRYENGINE including
Crysis, Codename Kingdoms, Ryse: Son of Rome, and Everyone’s Gone to the Rap-
ture. Over the years the engine has evolved into what is now Crytek’s latest
offering, CRYENGINE V. This powerful game development platform offers a
powerful suite of asset-creation tools and a feature-rich runtime engine featur-
ing high-quality real-time graphics. CRYENGINE can be used to make games
targeting a wide range of platforms including Xbox One, Xbox 360, PlaySta-
tion 4, PlayStation 3, Wii U, Linux, iOS and Android.

1.5.7 Sony’s PhyreEngine

In an effort to make developing games for Sony’s PlayStation 3 platformmore
accessible, Sony introduced PhyreEngine at theGameDeveloper’s Conference
(GDC) in 2008. As of 2013, PhyreEngine has evolved into a powerful and full-
featured game engine, supporting an impressive array of features including
advanced lighting anddeferred rendering. It has beenused bymany studios to
build over 90 published titles, including thatgamecompany’s hits flOw, Flower
and Journey, and Coldwood Interactive’s Unravel. PhyreEngine now supports
Sony’s PlayStation 4, PlayStation 3, PlayStation 2, PlayStation Vita and PSP
platforms. PhyreEngine gives developers access to the power of the highly
parallel Cell architecture on PS3 and the advanced compute capabilities of the
PS4, along with a streamlined new world editor and other powerful game de-
velopment tools. It is available free of charge to any licensed Sony developer
as part of the PlayStation SDK.

1.5.8 Microsoft’s XNA Game Studio

Microsoft’s XNA Game Studio is an easy-to-use and highly accessible game
development platform based on the C# language and the Common Language
Runtime (CLR), and aimed at encouraging players to create their own games
and share themwith the online gaming community, much as YouTube encour-
ages the creation and sharing of home-made videos.

For better or worse, Microsoft officially retired XNA in 2014. However,
developers can port their XNA games to iOS, Android, Mac OS X, Linux
and Windows 8 Metro via an open-source implementation of XNA called
MonoGame. For more details, see https://www.windowscentral.com/xna-
dead-long-live-xna.

1.5. Game Engine Survey 35

1.5.9 Unity

Unity is a powerful cross-platform game development environment and run-
time engine supporting a wide range of platforms. Using Unity, developers
can deploy their games on mobile platforms (e.g., Apple iOS, Google An-
droid), consoles (Microsoft Xbox 360 and Xbox One, Sony PlayStation 3 and
PlayStation 4, and Nintendo Wii, Wii U), handheld gaming platforms (e.g.,
Playstation Vita, Nintendo Switch), desktop computers (Microsoft Windows,
Apple Macintosh and Linux), TV boxes (e.g., Android TV and tvOS) and vir-
tual reality (VR) systems (e.g., Oculus Rift, Steam VR, Gear VR).

Unity’s primary design goals are ease of development and cross-platform
game deployment. As such, Unity provides an easy-to-use integrated editor
environment, in which you can create and manipulate the assets and entities
that make up your gameworld and quickly preview your game in action right
there in the editor, or directly on your target hardware. Unity also provides a
powerful suite of tools for analyzing and optimizing your game on each tar-
get platform, a comprehensive asset conditioning pipeline, and the ability to
manage the performance-quality trade-off uniquely on each deployment plat-
form. Unity supports scripting in JavaScript, C# or Boo; a powerful animation
system supporting animation retargeting (the ability to play an animation au-
thored for one character on a totally different character); and support for net-
worked multiplayer games.

Unity has been used to create a wide variety of published games, including
Deus Ex: The Fall byN-Fusion/EidosMontreal,Hollow Knight by TeamCherry,
and the subversive retro-style Cuphead by StudioMDHR. The Webby Award
winning short film Adam was rendered in real time using Unity.

1.5.10 Other Commercial Game Engines

There are lots of other commercial game engines out there. Although indie de-
velopers may not have the budget to purchase an engine, many of these prod-
ucts have great online documentation and/or wikis that can serve as a great
source of information about game engines and game programming in general.
For example, check out the Tombstone engine (http://tombstoneengine.com/)
by Terathon Software, the LeadWerks engine (https://www.leadwerks.com/),
and HeroEngine by Idea Fabrik, PLC (http://www.heroengine.com/).

1.5.11 Proprietary In-House Engines

Many companies build and maintain proprietary in-house game engines.
Electronic Arts built many of its RTS games on a proprietary engine called
Sage, developed at Westwood Studios. Naughty Dog’s Crash Bandicoot and

36 1. Introduction

Jak and Daxter franchises were built on a proprietary engine custom tailored
to the PlayStation and PlayStation 2. For the Uncharted series, Naughty Dog
developed a brand new engine custom tailored to the PlayStation 3 hardware.
This engine evolved andwas ultimately used to create Naughty Dog’s The Last
of Us series on the PlayStation 3 and PlayStation 4, as well as its most recent
releases, Uncharted 4: A Thief’s End and Uncharted: The Lost Legacy. And of
course, most commercially licensed game engines like Quake, Source, Unreal
Engine 4 and CRYENGINE all started out as proprietary in-house engines.

1.5.12 Open Source Engines

Open source 3D game engines are engines built by amateur and professional
game developers and provided online for free. The term “open source” typi-
cally implies that source code is freely available and that a somewhat open de-
velopment model is employed, meaning almost anyone can contribute code.
Licensing, if it exists at all, is often provided under the Gnu Public License
(GPL) or Lesser Gnu Public License (LGPL). The former permits code to be
freely used by anyone, as long as their code is also freely available; the latter
allows the code to be used even in proprietary for-profit applications. Lots of
other free and semi-free licensing schemes are also available for open source
projects.

There are a staggering number of open source engines available on the
web. Some are quite good, some are mediocre and some are just plain aw-
ful! The list of game engines provided online at http://en.wikipedia.org/
wiki/List_of_game_engines will give you a feel for the sheer number of en-
gines that are out there. (The list at http://www.worldofleveldesign.com/
categories/level_design_tutorials/recommended-game-engines.php is a bit
more digestible.) Both of these lists include both open-source and commer-
cial game engines.

OGRE is a well-architected, easy-to-learn and easy-to-use 3D rendering
engine. It boasts a fully featured 3D renderer including advanced lighting
and shadows, a good skeletal character animation system, a two-dimensional
overlay system for heads-up displays and graphical user interfaces, and a
post-processing system for full-screen effects like bloom. OGRE is, by its
authors’ own admission, not a full game engine, but it does provide
many of the foundational components required by pretty much any game
engine.

Some other well-known open source engines are listed here:

• Panda3D is a script-based engine. The engine’s primary interface is the
Python custom scripting language. It is designed to make prototyping

1.5. Game Engine Survey 37

3D games and virtual worlds convenient and fast.

• Yake is a game engine built on top of OGRE.

• Crystal Space is a game engine with an extensible modular architecture.

• Torque and Irrlicht are also well-known open-source game engines.

• While not technically open-source, the Lumberyard engine does provide
source code to its developers. It is a free cross-platformengine developed
by Amazon, and based on the CRYENGINE architecture.

1.5.13 2D Game Engines for Non-programmers

Two-dimensional games have become incredibly popular with the recent ex-
plosion of casual web gaming and mobile gaming on platforms like Apple
iPhone/iPad and Google Android. A number of popular game/multimedia
authoring toolkits have become available, enabling small game studios and
independent developers to create 2D games for these platforms. These
toolkits emphasize ease of use and allow users to employ a graphical user
interface to create a game rather than requiring the use of a programming lan-
guage. Check out this YouTube video to get a feel for the kinds of games
you can create with these toolkits: https://www.youtube.com/watch?v=
3Zq1yo0lxOU

• Multimedia Fusion 2 (http://www.clickteam.com/website/world is a 2D
game/multimedia authoring toolkit developed by Clickteam. Fusion is
used by industry professionals to create games, screen savers and other
multimedia applications. Fusion and its simpler counterpart, TheGames
Factory 2, are also used by educational camps like PlanetBravo (http:
//www.planetbravo.com) to teach kids about game development and
programming/logic concepts. Fusion supports the iOS, Android, Flash,
and Java platforms.

• Game Salad Creator (http://gamesalad.com/creator) is another graphical
game/multimedia authoring toolkit aimed at non-programmers, similar
in many respects to Fusion.

• Scratch (http://scratch.mit.edu) is an authoring toolkit and graphical
programming language that can be used to create interactive demos and
simple games. It is a great way for young people to learn about pro-
gramming concepts such as conditionals, loops and event-driven pro-
gramming. Scratch was developed in 2003 by the Lifelong Kindergarten
group, led by Mitchel Resnick at the MIT Media Lab.

38 1. Introduction

1.6 Runtime Engine Architecture

A game engine generally consists of a tool suite and a runtime component.
We’ll explore the architecture of the runtime piece first and then get into tool
architecture in the following section.

Figure 1.16 shows all of the major runtime components that make up a
typical 3D game engine. Yeah, it’s big! And this diagram doesn’t even account
for all the tools. Game engines are definitely large software systems.

Like all software systems, game engines are built in layers. Normally upper
layers depend on lower layers, but not vice versa. When a lower layer depends
upon a higher layer, we call this a circular dependency. Dependency cycles are to
be avoided in any software system, because they lead to undesirable coupling
between systems, make the software untestable and inhibit code reuse. This
is especially true for a large-scale system like a game engine.

What follows is a brief overview of the components shown in the diagram
in Figure 1.16. The rest of this book will be spent investigating each of these
components in a great deal more depth and learning how these components
are usually integrated into a functional whole.

1.6.1 Target Hardware

The target hardware layer represents the computer systemor console onwhich
the game will run. Typical platforms include Microsoft Windows, Linux and
MacOS-based PCs; mobile platforms like the Apple iPhone and iPad, An-
droid smart phones and tablets, Sony’s PlayStation Vita and Amazon’s Kindle
Fire (among others); and game consoles like Microsoft’s Xbox, Xbox 360 and
Xbox One, Sony’s PlayStation, PlayStation 2, PlayStation 3 and PlayStation 4,
and Nintendo’s DS, GameCube, Wii, Wii U and Switch. Most of the topics in
this book are platform-agnostic, but we’ll also touch on some of the design
considerations peculiar to PC or console development, where the distinctions
are relevant.

1.6.2 Device Drivers

Device drivers are low-level software components provided by the operating
system or hardware vendor. Drivers manage hardware resources and shield
the operating system and upper engine layers from the details of communi-
cating with the myriad variants of hardware devices available.

1.6. Runtime Engine Architecture 39

Figure 1.16. Runtime game engine architecture.

40 1. Introduction

1.6.3 Operating System

On a PC, the operating system (OS) is running all the time. It orchestrates the
execution of multiple programs on a single computer, one of which is your
game. Operating systems like Microsoft Windows employ a time-sliced ap-
proach to sharing the hardware with multiple running programs, known as
preemptive multitasking. This means that a PC game can never assume it has
full control of the hardware—it must “play nice” with other programs in the
system.

On early consoles, the operating system, if one existed at all, was just a thin
library layer that was compiled directly into your game executable. On those
early systems, the game “owned” the entire machine while it was running.
However, on modern consoles this is no longer the case. The operating sys-
tem on the Xbox 360, PlayStation 3, Xbox One and PlayStation 4 can interrupt
the execution of your game, or take over certain system resources, in order to
display online messages, or to allow the player to pause the game and bring
up the PS4’s “XMB” user interface or the Xbox One’s dashboard, for example.
On the PS4 and Xbox One, the OS is continually running background tasks,
such as recording video of your playthrough in case you decide to share it via
the PS4’s Share button, or downloading games, patches and DLC, so you can
have fun playing a game while you wait. So the gap between console and PC
development is gradually closing (for better or for worse).

1.6.4 Third-Party SDKs and Middleware

Most game engines leverage a number of third-party software development
kits (SDKs) and middleware, as shown in Figure 1.17. The functional or class-
based interface provided by an SDK is often called an application program-
ming interface (API). We will look at a few examples.

Figure 1.17. Third-party SDK layer.

1.6.4.1 Data Structures and Algorithms

Like any software system, games depend heavily on container data structures
and algorithms to manipulate them. Here are a few examples of third-party
libraries that provide these kinds of services:

1.6. Runtime Engine Architecture 41

• Boost. Boost is a powerful data structures and algorithms library, de-
signed in the style of the standard C++ library and its predecessor, the
standard template library (STL). (The online documentation for Boost is
also a great place to learn about computer science in general!)

• Folly. Folly is a library used at Facebook whose goal is to extend the
standard C++ library and Boost with all sorts of useful facilities, with an
emphasis on maximizing code performance.

• Loki. Loki is a powerful generic programming template library which is
exceedingly good at making your brain hurt!

The C++ Standard Library and STL

The C++ standard library also provides many of the same kinds of facil-
ities found in third-party libraries like Boost. The subset of the standard li-
brary that implements generic container classes such as std::vector and
std::list is often referred to as the standard template library (STL), although
this is technically a bit of a misnomer: The standard template library was writ-
ten by Alexander Stepanov and David Musser in the days before the C++ lan-
guage was standardized. Much of this library’s functionality was absorbed
into what is now the C++ standard library. When we use the term STL in this
book, it’s usually in the context of the subset of the C++ standard library that
provides generic container classes, not the original STL.

1.6.4.2 Graphics

Most game rendering engines are built on top of a hardware interface library,
such as the following:

• Glide is the 3D graphics SDK for the old Voodoo graphics cards. This
SDK was popular prior to the era of hardware transform and lighting
(hardware T&L) which began with DirectX 7.

• OpenGL is a widely used portable 3D graphics SDK.

• DirectX is Microsoft’s 3D graphics SDK and primary rival to OpenGL.

• libgcm is a low-level direct interface to the PlayStation 3’s RSX graphics
hardware, which was provided by Sony as a more efficient alternative to
OpenGL.

• Edge is a powerful and highly efficient rendering and animation engine
produced by Naughty Dog and Sony for the PlayStation 3 and used by
a number of first- and third-party game studios.

42 1. Introduction

• Vulkan is a low-level library created by the Khronos™ Group which en-
ables game programmers to submit rendering batches and GPGPU com-
pute jobs directly to the GPU as command lists, and provides them with
fine-grained control over memory and other resources that are shared
between the CPU and GPU. (See Section 4.11 for more on GPGPU pro-
gramming.)

1.6.4.3 Collision and Physics

Collision detection and rigid body dynamics (known simply as “physics”
in the game development community) are provided by the following well-
known SDKs:

• Havok is a popular industrial-strength physics and collision engine.
• PhysX is another popular industrial-strength physics and collision en-

gine, available for free download from NVIDIA.
• Open Dynamics Engine (ODE) is a well-known open source physics/col-

lision package.

1.6.4.4 Character Animation

Anumber of commercial animation packages exist, including but certainly not
limited to the following:

• Granny. Rad Game Tools’ popular Granny toolkit includes robust 3D
model and animation exporters for all the major 3D modeling and ani-
mation packages like Maya, 3D Studio MAX, etc., a runtime library for
reading and manipulating the exported model and animation data, and
a powerful runtime animation system. In my opinion, the Granny SDK
has the best-designed and most logical animation API of any I’ve seen,
commercial or proprietary, especially its excellent handling of time.

• Havok Animation. The line between physics and animation is becoming
increasingly blurred as characters become more and more realistic. The
company that makes the popular Havok physics SDK decided to cre-
ate a complimentary animation SDK, whichmakes bridging the physics-
animation gap much easier than it ever has been.

• OrbisAnim. The OrbisAnim library produced for the PS4 by SN Systems
in conjunction with the ICE and game teams at Naughty Dog, the Tools
and Technology group of Sony Interactive Entertainment, and Sony’s
Advanced Technology Group in Europe includes a powerful and effi-
cient animation engine and an efficient geometry-processing engine for
rendering.

1.6. Runtime Engine Architecture 43

1.6.4.5 Biomechanical Character Models

• Endorphin and Euphoria. These are animation packages that produce
character motion using advanced biomechanical models of realistic hu-
man movement.

As we mentioned previously, the line between character animation and
physics is beginning to blur. Packages like Havok Animation try to marry
physics and animation in a traditional manner, with a human animator pro-
viding the majority of the motion through a tool like Maya and with physics
augmenting that motion at runtime. But a firm called Natural Motion Ltd. has
produced a product that attempts to redefine how character motion is handled
in games and other forms of digital media.

Its first product, Endorphin, is a Maya plug-in that permits animators to
run full biomechanical simulations on characters and export the resulting an-
imations as if they had been hand animated. The biomechanical model ac-
counts for center of gravity, the character’s weight distribution, and detailed
knowledge of how a real human balances and moves under the influence of
gravity and other forces.

Its second product, Euphoria, is a real-time version of Endorphin intended
to produce physically and biomechanically accurate character motion at run-
time under the influence of unpredictable forces.

1.6.5 Platform Independence Layer

Most game engines are required to be capable of running on more than one
hardware platform. Companies like Electronic Arts and ActivisionBlizzard
Inc., for example, always target their games at a wide variety of platforms be-
cause it exposes their games to the largest possible market. Typically, the only
game studios that do not target at least two different platforms per game are
first-party studios, like Sony’s Naughty Dog and Insomniac studios. There-
fore, most game engines are architected with a platform independence layer,
like the one shown in Figure 1.18. This layer sits atop the hardware, drivers,
operating system and other third-party software and shields the rest of the
engine from the majority of knowledge of the underlying platform by “wrap-
ping” certain interface functions in custom functions overwhich you, the game
developer, will have control on every target platform.

There are two primary reasons to “wrap” functions as part of your game
engine’s platform independence layer like this: First, some application pro-
gramming interfaces (APIs), like those provided by the operating system, or
even some functions in older “standard” libraries like the C standard library,

44 1. Introduction

differ significantly from platform to platform; wrapping these functions pro-
vides the rest of your engine with a consistent API across all of your targeted
platforms. Second, even when using a fully cross-platform library such as Ha-
vok, you might want to insulate yourself from future changes, such as transi-
tioning your engine to a different collision/physics library in the future.

Figure 1.18. Platform independence layer.

1.6.6 Core Systems

Every game engine, and really every large, complex C++ software application,
requires a grab bag of useful software utilities. We’ll categorize these under
the label “core systems.” A typical core systems layer is shown in Figure 1.19.
Here are a few examples of the facilities the core layer usually provides:

• Assertions are lines of error-checking code that are inserted to catch log-
ical mistakes and violations of the programmer’s original assumptions.
Assertion checks are usually stripped out of the final production build
of the game. (Assertions are covered in Section 3.2.3.3.)

• Memory management. Virtually every game engine implements its own
custom memory allocation system(s) to ensure high-speed allocations
and deallocations and to limit the negative effects of memory fragmen-
tation (see Section 6.2.1).

• Math library. Games are by their nature highly mathematics-intensive.
As such, every game engine has at least one, if not many, math libraries.
These libraries provide facilities for vector and matrix math, quaternion
rotations, trigonometry, geometric operations with lines, rays, spheres,
frusta, etc., spline manipulation, numerical integration, solving systems
of equations and whatever other facilities the game programmers re-
quire.

• Custom data structures and algorithms. Unless an engine’s designers de-
cided to rely entirely on third-party packages such as Boost and Folly,
a suite of tools for managing fundamental data structures (linked lists,
dynamic arrays, binary trees, hash maps, etc.) and algorithms (search,
sort, etc.) is usually required. These are often hand coded to minimize
or eliminate dynamic memory allocation and to ensure optimal runtime
performance on the target platform(s).

1.6. Runtime Engine Architecture 45

Figure 1.19. Core engine systems.

A detailed discussion of the most common core engine systems can be
found in Part II.

1.6.7 Resource Manager

Present in every game engine in some form, the resource manager provides
a unified interface (or suite of interfaces) for accessing any and all types of
game assets and other engine input data. Some engines do this in a highly cen-
tralized and consistent manner (e.g., Unreal’s packages, OGRE’s Resource-
Manager class). Other engines take an ad hoc approach, often leaving it up
to the game programmer to directly access raw files on disk or within com-
pressed archives such as Quake’s PAK files. A typical resource manager layer
is depicted in Figure 1.20.

Resources (Game Assets)

Resource Manager

Texture
Resource

Material
Resource

3D Model
Resource

Font
Resource

Collision
Resource

Physics
Parameters

Game
World/Map etc.Skeleton

Resource

Figure 1.20. Resource manager.

1.6.8 Rendering Engine

The rendering engine is one of the largest and most complex components of
any game engine. Renderers can be architected in many different ways. There
is no one accepted way to do it, although as we’ll see, most modern rendering
engines share some fundamental design philosophies, driven in large part by
the design of the 3D graphics hardware upon which they depend.

One common and effective approach to rendering engine design is to em-
ploy a layered architecture as follows.

46 1. Introduction

1.6.8.1 Low-Level Renderer

The low-level renderer, shown in Figure 1.21, encompasses all of the raw ren-
dering facilities of the engine. At this level, the design is focused on rendering
a collection of geometric primitives as quickly and richly as possible, without
much regard for which portions of a scene may be visible. This component is
broken into various subcomponents, which are discussed below.

Low-Level Renderer

Primitive
Submission

Viewports &
Virtual Screens

Materials &
Shaders

Texture and
Surface Mgmt.

Graphics Device Interface

Static & Dynamic
Lighting Cameras Text & Fonts

Debug Drawing
(Lines etc.)

Skeletal Mesh
Rendering

Figure 1.21. Low-level rendering engine.

Graphics Device Interface

Graphics SDKs, such as DirectX, OpenGL or Vulkan, require a reasonable
amount of code to be written just to enumerate the available graphics devices,
initialize them, set up render surfaces (back-buffer, stencil buffer, etc.) and so
on. This is typically handled by a component that I’ll call the graphics device
interface (although every engine uses its own terminology).

For a PC game engine, you also need code to integrate your renderer with
the Windows message loop. You typically write a “message pump” that ser-
vicesWindowsmessageswhen they are pending and otherwise runs your ren-
der loop over and over as fast as it can. This ties the game’s keyboard polling
loop to the renderer’s screen update loop. This coupling is undesirable, but
with some effort it is possible to minimize the dependencies. We’ll explore
this topic in more depth later.

Other Renderer Components

The other components in the low-level renderer cooperate in order to collect
submissions of geometric primitives (sometimes called render packets), such as
meshes, line lists, point lists, particles, terrain patches, text strings and what-
ever else you want to draw, and render them as quickly as possible.

1.6. Runtime Engine Architecture 47

k

Figure 1.22. A typical scene graph/spatial subdivision layer, for culling optimization.

The low-level renderer usually provides a viewport abstraction with an as-
sociated camera-to-world matrix and 3D projection parameters, such as field
of view and the location of the near and far clip planes. The low-level renderer
also manages the state of the graphics hardware and the game’s shaders via
its material system and its dynamic lighting system. Each submitted primitive is
associated with a material and is affected by n dynamic lights. The material
describes the texture(s) used by the primitive, what device state settings need
to be in force, and which vertex and pixel shader to use when rendering the
primitive. The lights determine how dynamic lighting calculations will be ap-
plied to the primitive. Lighting and shading is a complex topic. We’ll discuss
the fundamentals in Chapter 11, but these topics are covered in depth in many
excellent books on computer graphics, including [16], [49] and [2].

1.6.8.2 Scene Graph/Culling Optimizations

The low-level renderer draws all of the geometry submitted to it, without
much regard for whether or not that geometry is actually visible (other than
back-face culling and clipping triangles to the camera frustum). A higher-level
component is usually needed in order to limit the number of primitives sub-
mitted for rendering, based on some form of visibility determination. This
layer is shown in Figure 1.22.

For very small game worlds, a simple frustum cull (i.e., removing objects
that the camera cannot “see”) is probably all that is required. For larger game
worlds, a more advanced spatial subdivision data structure might be used to
improve rendering efficiency by allowing the potentially visible set (PVS) of
objects to be determined very quickly. Spatial subdivisions can take many
forms, including a binary space partitioning tree, a quadtree, an octree, a kd-
tree or a sphere hierarchy. A spatial subdivision is sometimes called a scene
graph, although technically the latter is a particular kind of data structure and
does not subsume the former. Portals or occlusion culling methods might also
be applied in this layer of the rendering engine.

Ideally, the low-level renderer should be completely agnostic to the type
of spatial subdivision or scene graph being used. This permits different game

48 1. Introduction

Figure 1.23. Visual effects.

teams to reuse the primitive submission code but to craft a PVS determination
system that is specific to the needs of each team’s game. The design of the
OGRE open source rendering engine (http://www.ogre3d.org) is a great ex-
ample of this principle in action. OGRE provides a plug-and-play scene graph
architecture. Game developers can either select from a number of preimple-
mented scene graph designs, or they can provide a custom scene graph imple-
mentation.

1.6.8.3 Visual Effects

Modern game engines support a wide range of visual effects, as shown in Fig-
ure 1.23, including:

• particle systems (for smoke, fire, water splashes, etc.);
• decal systems (for bullet holes, foot prints, etc.);
• light mapping and environment mapping;

• dynamic shadows; and
• full-screen post effects, applied after the 3D scene has been rendered to

an off-screen buffer.

Some examples of full-screen post effects include:

• high dynamic range (HDR) tone mapping and bloom;

• full-screen anti-aliasing (FSAA); and
• color correction and color-shift effects, including bleach bypass, satura-

tion and desaturation effects, etc.

It is common for a game engine to have an effects system component that
manages the specialized rendering needs of particles, decals and other visual
effects. The particle and decal systems are usually distinct components of the
rendering engine and act as inputs to the low-level renderer. On the other

1.6. Runtime Engine Architecture 49

Front End

Heads-Up Display
(HUD)

Full-Motion Video
(FMV)

In-Game MenusIn-Game GUI Wrappers / Attract
Mode

In-Game Cinematics
(IGC)

Figure 1.24. Front end graphics.

hand, light mapping, environment mapping and shadows are usually han-
dled internally within the rendering engine proper. Full-screen post effects are
either implemented as an integral part of the renderer or as a separate compo-
nent that operates on the renderer’s output buffers.

1.6.8.4 Front End

Most games employ some kind of 2D graphics overlaid on the 3D scene for
various purposes. These include:

• the game’s heads-up display (HUD);
• in-game menus, a console and/or other development tools, which may or

may not be shipped with the final product; and
• possibly an in-game graphical user interface (GUI), allowing the player to

manipulate his or her character’s inventory, configure units for battle or
perform other complex in-game tasks.

This layer is shown in Figure 1.24. Two-dimensional graphics like these are
usually implemented by drawing textured quads (pairs of triangles) with an
orthographic projection. Or they may be rendered in full 3D, with the quads
bill-boarded so they always face the camera.

We’ve also included the full-motion video (FMV) system in this layer. This
system is responsible for playing full-screen movies that have been recorded
earlier (either rendered with the game’s rendering engine or using another
rendering package).

A related system is the in-game cinematics (IGC) system. This component
typically allows cinematic sequences to be choreographed within the game
itself, in full 3D. For example, as the playerwalks through a city, a conversation
between two key characters might be implemented as an in-game cinematic.
IGCs may or may not include the player character(s). They may be done as a
deliberate cut-away during which the player has no control, or they may be
subtly integrated into the game without the human player even realizing that

50 1. Introduction

an IGC is taking place. Some games, such as Naughty Dog’s Uncharted 4: A
Thief’s End, have moved away from pre-rendered movies entirely, and display
all cinematic moments in the game as real-time IGCs.

1.6.9 Profiling and Debugging Tools

Figure 1.25. Profiling
and debugging tools.

Games are real-time systems and, as such, game engineers often need to pro-
file the performance of their games in order to optimize performance. In addi-
tion, memory resources are usually scarce, so developers make heavy use of
memory analysis tools as well. The profiling and debugging layer, shown
in Figure 1.25, encompasses these tools and also includes in-game debug-
ging facilities, such as debug drawing, an in-game menu system or console
and the ability to record and play back gameplay for testing and debugging
purposes.

There are plenty of good general-purpose software profiling tools avail-
able, including:

• Intel’s VTune,

• IBM’s Quantify and Purify (part of the PurifyPlus tool suite),

• Insure++ by Parasoft, and

• Valgrind by Julian Seward and the Valgrind development team.

However, most game engines also incorporate a suite of custom profiling
and debugging tools. For example, they might include one or more of the
following:

• a mechanism for manually instrumenting the code, so that specific sec-
tions of code can be timed;

• a facility for displaying the profiling statistics on-screen while the game
is running;

• a facility for dumping performance stats to a text file or to an Excel
spreadsheet;

• a facility for determining howmuchmemory is being used by the engine,
and by each subsystem, including various on-screen displays;

• the ability to dump memory usage, high water mark and leakage stats
when the game terminates and/or during gameplay;

• tools that allow debug print statements to be peppered throughout the
code, along with an ability to turn on or off different categories of debug
output and control the level of verbosity of the output; and

1.6. Runtime Engine Architecture 51

Figure 1.26. Collision and physics subsystem.

• the ability to record game events and then play them back. This is tough
to get right, but when done properly it can be a very valuable tool for
tracking down bugs.

The PlayStation 4 provides a powerful core dump facility to aid program-
mers in debugging crashes. The PlayStation 4 is always recording the last 15
seconds of gameplay video, to allow players to share their experiences via the
Share button on the controller. Because of this, the PS4’s core dump facility
automatically provides programmers not only with a complete call stack of
what the program was doing when it crashed, but also with a screenshot of
the moment of the crash and 15 seconds of video footage showing what was
happening just prior to the crash. Core dumps can be automatically uploaded
to the game developer’s servers whenever the game crashes, even after the
game has shipped. These facilities revolutionize the tasks of crash analysis
and repair.

1.6.10 Collision and Physics

Collision detection is important for every game. Without it, objects would
interpenetrate, and it would be impossible to interact with the virtual world
in any reasonable way. Some games also include a realistic or semi-realistic
dynamics simulation. We call this the “physics system” in the game industry,
although the term rigid body dynamics is really more appropriate, because we
are usually only concerned with the motion (kinematics) of rigid bodies and
the forces and torques (dynamics) that cause this motion to occur. This layer
is depicted in Figure 1.26.

52 1. Introduction

Collision and physics are usually quite tightly coupled. This is because
when collisions are detected, they are almost always resolved as part of the
physics integration and constraint satisfaction logic. Nowadays, very few
game companies write their own collision/physics engine. Instead, a third-
party SDK is typically integrated into the engine.

• Havok is the gold standard in the industry today. It is feature-rich and
performs well across the boards.

• PhysX by NVIDIA is another excellent collision and dynamics engine.
It was integrated into Unreal Engine 4 and is also available for free as
a stand-alone product for PC game development. PhysX was originally
designed as the interface to Ageia’s physics accelerator chip. The SDK is
now owned and distributed by NVIDIA, and the company has adapted
PhysX to run on its latest GPUs.

Open source physics and collision engines are also available. Perhaps the
best-known of these is the Open Dynamics Engine (ODE). For more informa-
tion, see http://www.ode.org. I-Collide, V-Collide and RAPID are other pop-
ular non-commercial collision detection engines. All three were developed at
the University of North Carolina (UNC). For more information, see http://
www.cs.unc.edu/~geom/I_COLLIDE/index.html and http://www.cs.unc.
edu/∼geom/V_COLLIDE/index.html.

1.6.11 Animation

Any game that has organic or semi-organic characters (humans, animals, car-
toon characters or even robots) needs an animation system. There are five basic
types of animation used in games:

• sprite/texture animation,

• rigid body hierarchy animation,

• skeletal animation,

• vertex animation, and

• morph targets.

Skeletal animation permits a detailed 3D character mesh to be posed by an
animator using a relatively simple system of bones. As the bones move, the
vertices of the 3D mesh move with them. Although morph targets and vertex
animation are used in some engines, skeletal animation is the most prevalent
animation method in games today; as such, it will be our primary focus in this
book. A typical skeletal animation system is shown in Figure 1.27.

1.6. Runtime Engine Architecture 53

You’ll notice in Figure 1.16 that the skeletal mesh rendering component
bridges the gap between the renderer and the animation system. There is a
tight cooperation happening here, but the interface is very well defined. The
animation system produces a pose for every bone in the skeleton, and then
these poses are passed to the rendering engine as a palette of matrices. The
renderer transforms each vertex by the matrix or matrices in the palette, in
order to generate a final blended vertex position. This process is known as
skinning.

There is also a tight coupling between the animation and physics systems
when rag dolls are employed. A rag doll is a limp (often dead) animated char-
acter, whose bodily motion is simulated by the physics system. The physics
system determines the positions and orientations of the various parts of the
body by treating them as a constrained system of rigid bodies. The animation
system calculates the palette of matrices required by the rendering engine in
order to draw the character on-screen.

1.6.12 Human Interface Devices (HID)

Figure 1.28. The
player input/output
system, also known
as the human in-
terface device (HID)
layer.

Every game needs to process input from the player, obtained from various
human interface devices (HIDs) including:

• the keyboard and mouse,

• a joypad, or

• other specialized game controllers, like steering wheels, fishing rods,
dance pads, the Wiimote, etc.

We sometimes call this component the player I/O component, because

Skeletal Animation

Animation
Decompression

Inverse
Kinematics (IK)

Game-Specific
Post-Processing

Sub-skeletal
Animation

LERP and
Additive Blending

Animation
Playback

Animation State
Tree & Layers

Figure 1.27. Skeletal animation subsystem.

54 1. Introduction

we may also provide output to the player through the HID, such as force-
feedback/ rumble on a joypad or the audio produced by the Wiimote. A typ-
ical HID layer is shown in Figure 1.28.

The HID engine component is sometimes architected to divorce the low-
level details of the game controller(s) on a particular hardware platform from
the high-level game controls. It massages the raw data coming from the hard-
ware, introducing a dead zone around the center point of each joypad stick, de-
bouncing button-press inputs, detecting button-down and button-up events,
interpreting and smoothing accelerometer inputs (e.g., from the PlayStation
Dualshock controller) and more. It often provides a mechanism allowing the
player to customize the mapping between physical controls and logical game
functions. It sometimes also includes a system for detecting chords (multiple
buttons pressed together), sequences (buttons pressed in sequence within a
certain time limit) and gestures (sequences of inputs from the buttons, sticks,
accelerometers, etc.).

1.6.13 Audio

Figure 1.29. Audio
subsystem.

Audio is just as important as graphics in any game engine. Unfortunately, au-
dio often gets less attention than rendering, physics, animation, AI and game-
play. Case in point: Programmers often develop their code with their speak-
ers turned off! (In fact, I’ve known quite a few game programmers who didn’t
even have speakers or headphones.) Nonetheless, no great game is complete
without a stunning audio engine. The audio layer is depicted in Figure 1.29.

Audio engines vary greatly in sophistication. Quake’s audio engine is
pretty basic, and game teams usually augment it with custom functionality
or replace it with an in-house solution. Unreal Engine 4 provides a reason-
ably robust 3D audio rendering engine (discussed in detail in [45]), although
its feature set is limited and many game teams will probably want to aug-
ment and customize it to provide advanced game-specific features. For Di-
rectX platforms (PC, Xbox 360, Xbox One), Microsoft provides an excellent
runtime audio engine called XAudio2. Electronic Arts has developed an ad-
vanced, high-powered audio engine internally called SoundR!OT. In conjunc-
tionwith first-party studios likeNaughtyDog, Sony Interactive Entertainment
(SIE) provides a powerful 3D audio engine called Scream,which has been used
on a number of PS3 and PS4 titles including Naughty Dog’s Uncharted 4: A
Thief’s End and The Last of Us: Remastered. However, even if a game team uses a
preexisting audio engine, every game requires a great deal of custom software
development, integration work, fine-tuning and attention to detail in order to
produce high-quality audio in the final product.

1.6. Runtime Engine Architecture 55

1.6.14 Online Multiplayer/Networking

Many games permit multiple human players to play within a single virtual
world. Multiplayer games come in at least four basic flavors:

• Single-screen multiplayer. Two or more human interface devices (joypads,
keyboards, mice, etc.) are connected to a single arcade machine, PC or
console. Multiple player characters inhabit a single virtual world, and a
single camera keeps all player characters in frame simultaneously. Ex-
amples of this style of multiplayer gaming include Smash Brothers, Lego
Star Wars and Gauntlet.

• Split-screen multiplayer. Multiple player characters inhabit a single vir-
tual world, with multiple HIDs attached to a single game machine, but
each with its own camera, and the screen is divided into sections so that
each player can view his or her character.

• Networked multiplayer. Multiple computers or consoles are networked
together, with each machine hosting one of the players.

• Massively multiplayer online games (MMOG). Literally hundreds of thou-
sands of users can be playing simultaneously within a giant, persistent,
online virtual world hosted by a powerful battery of central servers.

Figure 1.30. Online
multiplayer net-
working subsystem.

The multiplayer networking layer is shown in Figure 1.30.
Multiplayer games are quite similar in many ways to their single-player

counterparts. However, support for multiple players can have a profound
impact on the design of certain game engine components. The game world
object model, renderer, human input device system, player control system and
animation systems are all affected. Retrofittingmultiplayer features into a pre-
existing single-player engine is certainly not impossible, although it can be a
daunting task. Still, many game teams have done it successfully. That said, it
is usually better to design multiplayer features from day one, if you have that
luxury.

It is interesting to note that going the other way—converting a multiplayer
game into a single-player game—is typically trivial. In fact, many game en-
gines treat single-playermode as a special case of amultiplayer game, inwhich
there happens to be only one player. The Quake engine is well known for its
client-on-top-of-server mode, in which a single executable, running on a single
PC, acts both as the client and the server in single-player campaigns.

1.6.15 Gameplay Foundation Systems

The term gameplay refers to the action that takes place in the game, the rules
that govern the virtual world in which the game takes place, the abilities of the

56 1. Introduction

Gameplay Foundations

Event/Messaging
System

Dynamic Game
Object Model

Scripting System

World Loading /
Streaming

Static World
Elements

Real-Time Agent-
Based Simulation

High-Level Game Flow System/FSM

Hierarchical
Object Attachment

Figure 1.31. Gameplay foundation systems.

player character(s) (known as player mechanics) and of the other characters and
objects in the world, and the goals and objectives of the player(s). Gameplay
is typically implemented either in the native language in which the rest of the
engine is written or in a high-level scripting language—or sometimes both. To
bridge the gap between the gameplay code and the low-level engine systems
that we’ve discussed thus far, most game engines introduce a layer that I’ll
call the gameplay foundations layer (for lack of a standardized name). Shown
in Figure 1.31, this layer provides a suite of core facilities, upon which game-
specific logic can be implemented conveniently.

1.6.15.1 Game Worlds and Object Models

The gameplay foundations layer introduces the notion of a game world, con-
taining both static and dynamic elements. The contents of the world are usu-
ally modeled in an object-oriented manner (often, but not always, using an
object-oriented programming language). In this book, the collection of object
types that make up a game is called the game object model. The game object
model provides a real-time simulation of a heterogeneous collection of objects
in the virtual game world.

Typical types of game objects include:

• static background geometry, like buildings, roads, terrain (often a special
case), etc.;

• dynamic rigid bodies, such as rocks, soda cans, chairs, etc.;

• player characters (PC);

• non-player characters (NPC);

1.6. Runtime Engine Architecture 57

• weapons;
• projectiles;
• vehicles;
• lights (which may be present in the dynamic scene at runtime, or only

used for static lighting offline);
• cameras;

and the list goes on.
The game world model is intimately tied to a software object model, and this

model can enduppervading the entire engine. The term software objectmodel
refers to the set of language features, policies and conventions used to imple-
ment a piece of object-oriented software. In the context of game engines, the
software object model answers questions, such as:

• Is your game engine designed in an object-oriented manner?
• What language will you use? C? C++? Java? OCaml?
• How will the static class hierarchy be organized? One giant monolithic

hierarchy? Lots of loosely coupled components?
• Will you use templates and policy-based design, or traditional polymor-

phism?
• How are objects referenced? Straight old pointers? Smart pointers?

Handles?
• How will objects be uniquely identified? By address in memory only?

By name? By a global unique identifier (GUID)?
• How are the lifetimes of game objects managed?
• How are the states of the game objects simulated over time?

We’ll explore software object models and game object models in consider-
able depth in Section 16.2.

1.6.15.2 Event System

Game objects invariably need to communicate with one another. This can be
accomplished in all sorts of ways. For example, the object sending the mes-
sage might simply call a member function of the receiver object. An event-
driven architecture, much like what one would find in a typical graphical user
interface, is also a common approach to inter-object communication. In an
event-driven system, the sender creates a little data structure called an event
or message, containing the message’s type and any argument data that are to
be sent. The event is passed to the receiver object by calling its event handler
function. Events can also be stored in a queue for handling at some future time.

58 1. Introduction

1.6.15.3 Scripting System

Many game engines employ a scripting language in order to make devel-
opment of game-specific gameplay rules and content easier and more rapid.
Without a scripting language, you must recompile and relink your game exe-
cutable every time a change is made to the logic or data structures used in the
engine. But when a scripting language is integrated into your engine, changes
to game logic and data can be made by modifying and reloading the script
code. Some engines allow script to be reloaded while the game continues to
run. Other engines require the game to be shut down prior to script recompi-
lation. But either way, the turnaround time is still much faster than it would
be if you had to recompile and relink the game’s executable.

1.6.15.4 Artificial Intelligence Foundations

Traditionally, artificial intelligence has fallen squarely into the realm of game-
specific software—it was usually not considered part of the game engine per
se. More recently, however, game companies have recognized patterns that
arise in almost every AI system, and these foundations are slowly starting to
fall under the purview of the engine proper.

For example, a company called Kynogon developed a middleware SDK
named Kynapse, which provides much of the low-level technology required
to build commercially viable game AI. This technology was purchased by Au-
todesk and has been superseded by a totally redesigned AI middleware pack-
age calledGamewareNavigation, designed by the same engineering team that
invented Kynapse. This SDK provides low-level AI building blocks such as
navmesh generation, path finding, static and dynamic object avoidance, iden-
tification of vulnerabilities within a play space (e.g., an open window from
which an ambush could come) and a well-defined interface between AI and
animation.

1.6.16 Game-Specific Subsystems

On top of the gameplay foundation layer and the other low-level engine com-
ponents, gameplay programmers and designers cooperate to implement the
features of the game itself. Gameplay systems are usually numerous, highly
varied and specific to the game being developed. As shown in Figure 1.32,
these systems include, but are certainly not limited to the mechanics of the
player character, various in-game camera systems, artificial intelligence for
the control of non-player characters, weapon systems, vehicles and the list
goes on. If a clear line could be drawn between the engine and the game,

1.7. Tools and the Asset Pipeline 59

it would lie between the game-specific subsystems and the gameplay foun-
dations layer. Practically speaking, this line is never perfectly distinct. At
least some game-specific knowledge invariably seeps down through the game-
play foundations layer and sometimes even extends into the core of the engine
itself.

1.7 Tools and the Asset Pipeline

Any game engine must be fed a great deal of data, in the form of game assets,
configuration files, scripts and so on. Figure 1.33 depicts some of the types of
game assets typically found in modern game engines. The thicker dark-grey
arrows show how data flows from the tools used to create the original source
assets all the way through to the game engine itself. The thinner light-grey
arrows show how the various types of assets refer to or use other assets.

1.7.1 Digital Content Creation Tools

Games are multimedia applications by nature. A game engine’s input data
comes in a wide variety of forms, from 3Dmesh data to texture bitmaps to an-
imation data to audio files. All of this source data must be created and manip-
ulated by artists. The tools that the artists use are called digital content creation
(DCC) applications.

A DCC application is usually targeted at the creation of one particular type
of data—although some tools can produce multiple data types. For example,
Autodesk’s Maya and 3ds Max and Pixologic’s ZBrush are prevalent in the
creation of both 3D meshes and animation data. Adobe’s Photoshop and its
ilk are aimed at creating and editing bitmaps (textures). SoundForge is a pop-
ular tool for creating audio clips. Some types of game data cannot be created
using an off-the-shelf DCC app. For example, most game engines provide a
custom editor for laying out game worlds. Still, some engines do make use of

GAME-SPECIFIC SUBSYSTEMS

Game-Specific Rendering

Terrain Rendering Water Simulation
& Rendering

etc.

Player Mechanics

Collision Manifold Movement

State Machine &
Animation

Game Cameras

Player-Follow
Camera

Debug Fly-
Through Cam

Fixed Cameras Scripted/Animated
Cameras

AI

Sight Traces &
Perception Path Finding (A*)

Goals & Decision-
Making

Actions
(Engine Interface)

Camera-Relative
Controls (HID)

Weapons Power-Ups etc.Vehicles Puzzles

Figure 1.32. Game-specific subsystems.

60 1. Introduction

Digital Content Creation (DCC) Tools

Game World

Game
Object

Mesh

Skeletal Hierarchy
Exporter

Skel.
Hierarchy

Animation
Exporter

Animation
Curves

TGA
Texture

DXT Compression DXT
Texture

World Editor

Game Object
Definition Tool

Material
Game Obj.
Template

Animation
Set

Animation Tree
Editor

Animation
Tree

Game
Object

Game
Object

Asset
Conditioning

Pipeline

GAME

WAV
sound

Audio Manager
Tool

Sound
Bank

Mesh Exporter

PhotoshopPhotoshop

Sound Forge or Audio ToolSound Forge or Audio Tool

Game
Object

Maya, 3DSMAX, etc.Maya, 3DSMAX, etc.

Custom Material
Plug-In

Houdini/Other Particle ToolHoudini/Other Particle Tool

Particle
System

Particle Exporter

Figure 1.33. Tools and the asset pipeline.

preexisting tools for game world layout. I’ve seen game teams use 3ds Max
or Maya as a world layout tool, with or without custom plug-ins to aid the
user. Ask most game developers, and they’ll tell you they can remember a
time when they laid out terrain height fields using a simple bitmap editor,
or typed world layouts directly into a text file by hand. Tools don’t have to be
pretty—game teamswill usewhatever tools are available and get the job done.
That said, tools must be relatively easy to use, and they absolutely must be re-
liable, if a game team is going to be able to develop a highly polished product
in a timely manner.

1.7. Tools and the Asset Pipeline 61

1.7.2 The Asset Conditioning Pipeline

The data formats used by digital content creation (DCC) applications are rarely
suitable for direct use in-game. There are two primary reasons for this.

1. The DCC app’s in-memorymodel of the data is usuallymuchmore com-
plex thanwhat the game engine requires. For example, Maya stores a di-
rected acyclic graph (DAG) of scene nodes, with a complex web of inter-
connections. It stores a history of all the edits that have been performed
on the file. It represents the position, orientation and scale of every ob-
ject in the scene as a full hierarchy of 3D transformations, decomposed
into translation, rotation, scale and shear components. A game engine
typically only needs a tiny fraction of this information in order to render
the model in-game.

2. The DCC application’s file format is often too slow to read at runtime,
and in some cases it is a closed proprietary format.

Therefore, the data produced by a DCC app is usually exported to a more
accessible standardized format, or a custom file format, for use in-game.

Once data has been exported from the DCC app, it often must be further
processed before being sent to the game engine. And if a game studio is ship-
ping its game on more than one platform, the intermediate files might be pro-
cessed differently for each target platform. For example, 3D mesh data might
be exported to an intermediate format, such as XML, JSON or a simple binary
format. Then it might be processed to combine meshes that use the same ma-
terial, or split up meshes that are too large for the engine to digest. The mesh
data might then be organized and packed into a memory image suitable for
loading on a specific hardware platform.

The pipeline from DCC app to game engine is sometimes called the asset
conditioning pipeline (ACP). Every game engine has this in some form.

1.7.2.1 3D Model/Mesh Data

The visible geometry you see in a game is typically constructed from triangle
meshes. Some older games also make use of volumetric geometry known as
brushes. We’ll discuss each type of geometric data briefly below. For an in-
depth discussion of the techniques used to describe and render 3D geometry,
see Chapter 11.

3D Models (Meshes)

A mesh is a complex shape composed of triangles and vertices. Renderable
geometry can also be constructed from quads or higher-order subdivision

62 1. Introduction

surfaces. But on today’s graphics hardware, which is almost exclusively
geared toward rendering rasterized triangles, all shapes must eventually be
translated into triangles prior to rendering.

A mesh typically has one or more materials applied to it in order to define
visual surface properties (color, reflectivity, bumpiness, diffuse texture, etc.).
In this book, I will use the term “mesh” to refer to a single renderable shape,
and “model” to refer to a composite object that may contain multiple meshes,
plus animation data and other metadata for use by the game.

Meshes are typically created in a 3D modeling package such as 3ds Max,
Maya or SoftImage. A powerful and popular tool by Pixologic called ZBrush
allows ultra high-resolutionmeshes to be built in a very intuitiveway and then
down-converted into a lower-resolution model with normal maps to approx-
imate the high-frequency detail.

Exporters must be written to extract the data from the digital content cre-
ation (DCC) tool (Maya, Max, etc.) and store it on disk in a form that is di-
gestible by the engine. The DCC apps provide a host of standard or semi-
standard export formats, although none are perfectly suited for game devel-
opment (with the possible exception of COLLADA). Therefore, game teams
often create custom file formats and custom exporters to go with them.

Brush Geometry

Brush geometry is defined as a collection of convex hulls, each of which is
defined bymultiple planes. Brushes are typically created and edited directly in
the gameworld editor. This is essentially an “old school” approach to creating
renderable geometry, but it is still used in some engines.

Pros:

• fast and easy to create;

• accessible to game designers—often used to “block out” a game level for
prototyping purposes;

• can serve both as collision volumes and as renderable geometry.

Cons:

• low-resolution;

• difficult to create complex shapes;

• cannot support articulated objects or animated characters.

1.7.2.2 Skeletal Animation Data

A skeletal mesh is a special kind of mesh that is bound to a skeletal hierarchy
for the purposes of articulated animation. Such a mesh is sometimes called a

1.7. Tools and the Asset Pipeline 63

skin because it forms the skin that surrounds the invisible underlying skeleton.
Each vertex of a skeletal mesh contains a list of indices indicating to which
joint(s) in the skeleton it is bound. A vertex usually also includes a set of joint
weights, specifying the amount of influence each joint has on the vertex.

In order to render a skeletal mesh, the game engine requires three distinct
kinds of data:

1. the mesh itself,

2. the skeletal hierarchy (joint names, parent-child relationships and the
base pose the skeletonwas in when it was originally bound to themesh),
and

3. one or more animation clips, which specify how the joints should move
over time.

The mesh and skeleton are often exported from the DCC application as a
single data file. However, if multiple meshes are bound to a single skeleton,
then it is better to export the skeleton as a distinct file. The animations are
usually exported individually, allowing only those animations which are in
use to be loaded intomemory at any given time. However, some game engines
allow a bank of animations to be exported as a single file, and some even lump
the mesh, skeleton and animations into one monolithic file.

An unoptimized skeletal animation is defined by a stream of 4× 3 matrix
samples, taken at a frequency of at least 30 frames per second, for each of the
joints in a skeleton (of which there can be 500 or more for a realistic humanoid
character). Thus, animation data is inherently memory-intensive. For this rea-
son, animation data is almost always stored in a highly compressed format.
Compression schemes vary from engine to engine, and some are proprietary.
There is no one standardized format for game-ready animation data.

1.7.2.3 Audio Data

Audio clips are usually exported from Sound Forge or some other audio pro-
duction tool in a variety of formats and at a number of different data sam-
pling rates. Audio files may be in mono, stereo, 5.1, 7.1 or other multi-channel
configurations. Wave files (.wav) are common, but other file formats such as
PlayStation ADPCM files (.vag) are also commonplace. Audio clips are often
organized into banks for the purposes of organization, easy loading into the
engine, and streaming.

64 1. Introduction

1.7.2.4 Particle Systems Data

Modern games make use of complex particle effects. These are authored by
artists who specialize in the creation of visual effects. Third-party tools, such
as Houdini, permit film-quality effects to be authored; however, most game
engines are not capable of rendering the full gamut of effects that can be cre-
ated with Houdini. For this reason, many game companies create a custom
particle effect editing tool, which exposes only the effects that the engine ac-
tually supports. A custom tool might also let the artist see the effect exactly as
it will appear in-game.

1.7.3 The World Editor

The game world is where everything in a game engine comes together. To my
knowledge, there are no commercially available game world editors (i.e., the
gameworld equivalent ofMaya orMax). However, a number of commercially
available game engines provide good world editors:

• Some variant of the Radiant game editor is used by most game engines
based on Quake technology.

• The Half-Life 2 Source engine provides a world editor called Hammer.
• UnrealEd is the Unreal Engine’s world editor. This powerful tool also

serves as the asset manager for all data types that the engine can con-
sume.

• Sandbox is the world editor in CRYENGINE.

Writing a good world editor is difficult, but it is an extremely important
part of any good game engine.

1.7.4 The Resource Database

Game engines dealwith awide range of asset types, from renderable geometry
to materials and textures to animation data to audio. These assets are defined
in part by the raw data produced by the artists when they use a tool likeMaya,
Photoshop or SoundForge. However, every asset also carries with it a great
deal ofmetadata. For example, when an animator authors an animation clip in
Maya, the metadata provides the asset conditioning pipeline, and ultimately
the game engine, with the following information:

• A unique id that identifies the animation clip at runtime.
• The name and directory path of the source Maya (.ma or .mb) file.
• The frame range—on which frame the animation begins and ends.
• Whether or not the animation is intended to loop.

1.7. Tools and the Asset Pipeline 65

OS

Drivers

Hardware (PC, XBOX360, PS3, etc.)

3rd Party SDKs

Platform Independence Layer

Core Systems

Run-Time Engine

Tools and World Builder

Figure 1.34. Stand-alone tools architecture.

• The animator’s choice of compression technique and level. (Some assets
can be highly compressed without noticeably degrading their quality,
while others require less or no compression in order to look right in-
game.)

Every game engine requires some kind of database to manage all of the
metadata associated with the game’s assets. This database might be imple-
mented using an honest-to-goodness relational database such as MySQL or
Oracle, or it might be implemented as a collection of text files, managed by
a revision control system such as Subversion, Perforce or Git. We’ll call this
metadata the resource database in this book.

No matter in what format the resource database is stored and managed,
some kind of user interface must be provided to allow users to author and
edit the data. At Naughty Dog, we wrote a custom GUI in C# called Builder
for this purpose. For more information on Builder and a few other resource
database user interfaces, see Section 7.2.1.3.

1.7.5 Some Approaches to Tool Architecture

A game engine’s tool suite may be architected in any number of ways. Some
tools might be stand-alone pieces of software, as shown in Figure 1.34. Some
tools may be built on top of some of the lower layers used by the runtime
engine, as Figure 1.35 illustrates. Some toolsmight be built into the game itself.

66 1. Introduction

OS

Drivers

Hardware (PC, XBOX360, PS3, etc.)

3rd Party SDKs

Platform Independence Layer

Core Systems

Run-Time Engine Tools and World Builder

Figure 1.35. Tools built on a framework shared with the game.

For example, Quake- and Unreal-based games both boast an in-game console
that permits developers and “modders” to type debugging and configuration
commands while running the game. Finally, web-based user interfaces are
becoming more and more popular for certain kinds of tools.

OS

Drivers

Hardware (PC, XBOX360, PS3, etc.)

3rd Party SDKs

Platform Independence Layer

Core Systems

Run-Time Engine

Other Tools

World Builder

Figure 1.36. Unreal Engine’s tool architecture.

1.7. Tools and the Asset Pipeline 67

As an interesting and unique example, Unreal’s world editor and asset
manager, UnrealEd, is built right into the runtime game engine. To run the
editor, you run your game with a command-line argument of “editor.” This
unique architectural style is depicted in Figure 1.36. It permits the tools to
have total access to the full range of data structures used by the engine and
avoids a common problem of having to have two representations of every data
structure—one for the runtime engine and one for the tools. It also means that
running the game from within the editor is very fast (because the game is ac-
tually already running). Live in-game editing, a feature that is normally very
tricky to implement, can be developed relatively easily when the editor is a
part of the game. However, an in-engine editor design like this does have its
share of problems. For example, when the engine is crashing, the tools become
unusable as well. Hence a tight coupling between engine and asset creation
tools can tend to slow down production.

1.7.5.1 Web-Based User Interfaces

Web-based user interfaces are quickly becoming the norm for certain kinds of
game development tools. At Naughty Dog, we use a number of web-based
UIs. Naughty Dog’s localization tool serves as the front-end portal into our
localization database. Tasker is the web-based interface used by all Naughty
Dog employees to create, manage, schedule, communicate and collaborate on
game development tasks during production. A web-based interface known
as Connector also serves as our window into the various streams of debugging
information that are emitted by the game engine at runtime. The game spits
out its debug text into various named channels, each associated with a differ-
ent engine system (animation, rendering, AI, sound, etc.) These data streams
are collected by a lightweight Redis database. The browser-based Connec-
tor interface allows users to view and filter this information in a convenient
way.

Web-based UIs offer a number of advantages over stand-alone GUI appli-
cations. For one thing, web apps are typically easier and faster to develop
and maintain than a stand-alone app written in a language like Java, C# or
C++. Web apps require no special installation—all the user needs is a com-
patible web browser. Updates to a web-based interface can be pushed out to
the users without the need for an installation step—they need only refresh or
restart their browser to receive the update. Web interfaces also force us to de-
sign our tools using a client-server architecture. This opens up the possibility
of distributing our tools to a wider audience. For example, Naughty Dog’s
localization tool is available directly to outsourcing partners around the globe

68 1. Introduction

who provide language translation services to us. Stand-alone tools still have
their place of course, especially when specialized GUIs such as 3D visualiza-
tion are required. But if your tool only needs to present the user with editable
forms and tabular data, a web-based tool may be your best bet.

3D CONCEPTS

#

This chapter is excerpted from

3D Game Environments

by Luke Ahearn

© 2017 Taylor & Francis Group. All rights reserved.

5

Learn more

https://www.crcpress.com/3D-Game-Environments-Create-Professional-3D-Game-Worlds/Ahearn/p/book/9781138920026?utm_source=shared_link&utm_medium=post&utm_campaign=B190204554
https://www.crcpress.com/3D-Game-Environments-Create-Professional-3D-Game-Worlds/Ahearn/p/book/9781138920026?utm_source=shared_link&utm_medium=post&utm_campaign=B190204554

37

CHAPTER TWO

Three-dimensional concepts

Introduction

This chapter is only an introduction to the concepts of three-dimensional
(3D) modeling you will most likely be working with. Once you under-
stand these concepts, you can more easily use the tools at your disposal
to create the art in this book. For the details on how to do any of the
specific functions for any given 3D application, you need to consult the
documentation for that application. The good news is that, as game art-
ists, we work in both two dimensional (2D) and 3D, but at a pretty basic
level of functionality, so that you can easily achieve these results in vir-
tually any 3D package.

A note on texture and polygon budgets: in environmental (and all
game) art, we still need to control our asset budgets. Even though we are
able to use much larger assets (polygon counts and textures), we don’t
want to use a high-polygon model if it is for a simple background world
prop. By definition, environmental art is still easier and more basic than
modeling characters, vehicles, or weapons. This is true for a few reasons.
Environmental art needs to tile and be efficient. It cannot overshadow
the characters and important features of the world. It’s like formatting
text. If every word in this book was bold and underlined, it wouldn’t
mean anything; it would only be annoying to read. Bold and italics are
reserved for special words, very, very special words. So, too, must assets
be reserved for special places and events in the game. The front of a
castle may require more textures, polygons, and just plain artistic atten-
tion than the empty hut down the road. Likewise, a racing game is going
to focus its assets on the cars and not the buildings blurring past in the
background. This is not to say the buildings are not created to the same

3D GAME ENVIRONMENTS38

standards as the cars, but simply that the car will require more resources
to achieve the required level of detail.

Texture mapping

Although creating the texture is a 2D process, texture mapping—the
process of applying 2D art to the 3D objects in the world—is part of the
3D process. Textures add a huge amount of detail and richness to a 3D
model. A texture map is mapped (applied) to the surface of the shape in
various ways, like wrapping a picture around a box to make it look like
a specific object—a crate, for example (Figure 2.1).

In environmental art, we create a lot of 2D and 3D assets. Here, we
will look at the most often-used 3D concepts you need to be familiar with.
We will create the 2D art as well, but, for a deeper education on 2D art
creation, please refer to my book 3D Game Textures (Focal Press 2006).

FIGURE 2.1  A texture map is an image that is applied to the surface of a shape, like wrapping a
picture around a box to make it look like a crate in this figure.

39THREE-dIMENSIONAL CONCEPTS

We will address texture creation on a simpler level in this book, and we
will turn our focus to the application of textures to the mesh. In 3D Game
Textures, the emphasis was strictly on 2D art and texture creation, but,
here, we learn how to map the textures to the 3D assets we create and to
use shaders. The creation of textures for the models in this book will be
addressed on a case-by-case basis as we create them for each project. This
includes the creation of the UV template and the application of the texture
to the model (Figure 2.2).

Note that there is a distinction between a texture and a skin. A skin is
the art that goes on a more complex model such as a character, a mon-
ster, or a weapon. Skins are generally not tileable and are created for a
specific mesh. A texture is generally the art that covers the game world
surfaces: grass, floor tiles, walls, and the like, and UV-ing these surfaces
is much simpler than skinning an organic model.

Mapping types

When applying textures to a mesh in a 3D program, there are some tools
that will apply the textures rapidly in a set fashion with the push of a
button. While these tools are useful and quick, they have drawbacks that
make them useless in some applications or, at the very least, produce
results that must be cleaned up. Such push-button tools assume that the
mapping type is applied to the entire mesh. However, mapping types
become more useful when used on a face-by-face basis. We will get to

FIGURE 2.2  The process of UV texture layout and mapping.

3D GAME ENVIRONMENTS40

that level of mapping in the projects when we actually start laying out
UVs. Right now, we will look at the push-button mapping types, since
they are the basis for more complex mapping. They are as follows.

Planar mapping works like a projector. The texture is projected onto the
3D surface from one direction. This can be used on walls and other flat
planar surfaces but is limited and can’t be used on complex objects since
the process of projecting the texture in one direction also creates smear-
ing on the sides of the 3D model that don’t face the planar projection
directly (Figure 2.3).

Box mapping projects the texture onto the model from six sides. This
works great on boxes! Used on a more organic mesh, there will be seams
and smearing on portions of the model (Figure 2.4).

Spherical mapping surrounds the object and projects the map from all
sides in a spherical pattern. The drawback to this mapping type is that
you can see an edge where the textures meet unless you have created a
texture that tiles correctly. Also, the texture gets gathered up, or pinched,
at the top and bottom of the sphere and needs to be dealt with in the tex-
ture. Spherical mapping is obviously great for planets and other spheri-
cal objects (Figure 2.5).

Cylindrical mapping projects the map by wrapping it around in a cylin-
drical shape. Cylindrical mapping can be used on tree trunks, columns,
and other cylindrical objects (Figure 2.6).

UV editing

These mapping types are all limited in their uses. Later on, we will start
the process of editing the UV coordinates for a model. This is the pro-
cess you will use most of the time when mapping a texture to an object.
It is a face-by-face process that can be tedious but is extremely important
for the efficiency and quality of the assets.

Multitexturing is the process of laying multiple textures on one mesh.
This is powerful because you can mix and match many smaller, sim-
pler textures over a surface to get a very wide variety of looks on your
meshes. (See the “Multitexturing or Multiple UV Channels” section in
Chapter 1 for a detailed explanation of multitexturing.) Figure 2.7 shows
a simple example of multitexturing.

Planar

Box

Spherical

Cylindrical

Multitexturing

41THREE-dIMENSIONAL CONCEPTS

FIGURE 2.3  Planar mapping projects the texture onto the 3D mesh from one direction.

3D GAME ENVIRONMENTS42

3D

The very basics of 3D start with the vertex. The vertex is represented by
a dot on screen, but, in reality, it is a mathematical location in 3D space
defined by three numbers, or the xyz location. Three or more vertices
connected to each other is a polygon. Many polygons together create a
mesh (Figure 2.8).

You can edit 3D objects at many levels, from an individual vertex to
an element. The basic parts of a mesh are as follows (see Figure 2.9):

•	 Vertex

•	 Edge

•	 Face

•	 Element

FIGURE 2.4  Box mapping.

43THREE-dIMENSIONAL CONCEPTS

FIGURE 2.5  Spherical mapping.

3D GAME ENVIRONMENTS44

3D space

When working in 3D on a computer, we are actually looking at 2D
images that update fast enough that we feel as if we are actually looking
at a 3D object when we move about it. That being the case, we need to
utilize many tools and functions to help us overcome these limits. First,
we will look at the little window into our 3D world, which is usually
called a viewport.

Viewports are like the portholes of a ship: tiny, restricted openings look-
ing into to a much larger world. To overcome this restriction, we need to
use any trick or tool we can. First off, buy as many big monitors as you
can afford and your system can support. With the drop in the cost of flat
screen monitors and video cards, it can be feasible to make this upgrade.
You can put all your menus on one screen and work on art on another. I
usually have my 3D application on one screen (say, on my left side) with

Viewports

FIGURE 2.6  Cylindrical mapping projects the map by wrapping it around
in a cylindrical shape.

45THREE-dIMENSIONAL CONCEPTS

all the menus on the other (on the right) and Photoshop in the reverse
order so I can quickly switch between the two applications.

Here are some other tips for working efficiently:

•	 Get used to working in one viewport at a time rather than four at
once, if possible. This gives you a larger view of the world.

•	 Use hotkeys and shortcuts so you are able to gradually remove
menu bars, your goal being to work in expert mode as often as
possible where there are no menus on screen.

•	 Create custom menu bars if you need to use menu bars. Applications
often come with bloated menus for many functions you may never
use; these take up a large amount of screen space.

•	 Get used to switching viewports using hotkeys, so, if you need to
line something up using a specific viewport, you can do so quickly
and in full screen.

FIGURE 2.7  Multitexturing.

3D GAME ENVIRONMENTS46

•	 Learn and use the zoom functions. This will allow you to quickly
zero in on an object or back completely out for a bird’s-eye view
of the world.

•	 Learn viewport navigation, that is, the modes of moving around
the viewports in the fastest, most efficient way. Some 3D programs
have accelerator hotkeys that allow for a larger movement across
the world when held down. For example, holding Ctrl when mov-
ing your view across the world may move you × times (× being any
multiplier such as 4× or 10×) farther per mouse movement.

•	 Don’t forget the right-mouse click, or pop-up, menus. These can
usually be customized as well.

Vertex

Line

Mesh

Face

0,0,0

0,0,0

0,0,0

0,0,0

0,64,0

0,64,0
−64,64,0

0,64,0

–64,64,0–64,0,0

0,0,64

–64,64,64
64,64,64

–64,0,64

FIGURE 2.8  The creation of a 3D object.

Vertex Edge Face Element

FIGURE 2.9  The basic parts of a mesh.

47THREE-dIMENSIONAL CONCEPTS

Most 3D applications offer a walk-through mode, or, at the very least,
the ability to set up a camera to look at the world from the position and
at the focal angle the player will see it in the game. After flying around
the world you are modeling, you may be surprised at how much you can
or can’t see at the player’s level. The world will often appear much larger
when you are taken out of the sky and put on the ground at the player’s eye
level. The focal length of the camera alone will have a dramatic effect on
how large the world appears. It is common practice to give the game cam-
era a slightly fish-eyed view to compensate for the limits of the monitor.

Learn to use shortcuts and hotkeys! We all know what they are by now.
Pressing a key or using a set of keystrokes is far faster than navigating
the menus. Do anything you can to speed up your work. Learn to create
macros, actions, and custom menus, and learn a new shortcut or hotkey
combo every so often. An added benefit to this efficiency is reducing
stress on your fingers and wrists. If you work at a computer all day, the
number of clicks and mouse movements adds up. The cumulative wear
and tear is tremendous when you start doing the math.

When setting up to model items for a world space, you need to know the
units of measurements in that world. What unit is used to communicate
the size of an object: feet, units, or meters? And how do these units trans-
late in the game? Later, we look at world scale and measurement in more
detail and examine what we need to know in order to determine what our
units of measurement are and what they mean.

It is common in most games to use generic units as a measurement,
and those units tend to be in powers of two (16, 32, 64, 128). The units
of measurement are important for consistency, accuracy, and technical
efficiency. If you create a model and a texture for a game world using all
the same units of measurement, things will come together much more
smoothly. But what does a generic unit equal? It could be a foot or a
mile—that will be determined as you develop a game.

The grid and the snap settings are related to the unit of measurement.
Grids are just that—a grid of lines spaced evenly apart. You can set the
spacing of the grid. This is handy when used in conjunction with snaps.
A snap is a setting that controls how strongly your cursor will snap to
a specific point. A strong snap setting will grab your cursor when you
are close to a certain object and snap it precisely in place; a weaker snap
allows you to get closer to the snap position before grabbing the cursor
from you. That place can be defined by you, and, usually, you want your
cursor snapping to the intersections of the grid or the nearest vertex.
This is very helpful when creating world art, since you can snap a line or

Player perspective

Shortcuts
and hotkeys

Units of
measurement

Grids and snaps

3D GAME ENVIRONMENTS48

a shape to a precise size on the grid, and that precisely sized object will
easily fit a precisely created texture and then into a game world based on
the same settings. This also speeds things up. Imagine trying to drag a
shape out to a precise size or hand entering the sizes for every primitive
you create. Some of the common snap types (Figure 2.10) are as follows:

•	 Edge—Snaps along an edge

•	 Edge midpoint—Snaps to the middle of an edge

•	 Endpoint—Snaps to the end point of edges on a mesh

•	 Face—Snaps to the surface of a triangular face

•	 Grid line—Snaps to any point on a grid line

•	 Grid point—Snaps to the intersections of a grid

•	 Pivot—Snaps to the pivot point of an object

•	 Vertex—Snaps to the vertices of a mesh

Note: In 3D applications, snaps can operate in different ways. Some
modes offer a two-dimensional snap that only snaps to a specific grid or
plane, or a three-dimensional snap where the cursor snaps to anything
that is set for snapping on any plane. 3D snapping lets you create and
move objects in all three dimensions.

Snap is also available to transforms as well. You can set the rotation or
scaling to snap at certain angles or percentages.

You can also hide objects if you wish, and that makes working much
easier. Not only is the scene clearer, but there will also be a smaller load

Hide/unhide

Edge Edge midpoint Endpoint Face

VertexPivotGrid pointGrid line

FIGURE 2.10  Various ways to precisely snap objects together.

49THREE-dIMENSIONAL CONCEPTS

on the computer. If you are experiencing poor performance, you can
hide objects to speed things up. There are usually multiple ways to hide
and unhide objects: (a) using groups, (b) selections, or (c) entity types
(lights, objects, and so on).

Freeze allows you to freeze an object so you can’t interact with it, but
it is there for your reference. This can make life easier, as you won’t be
selecting unwanted objects as you work.

You usually have options as to how the objects are drawn on the screen,
meaning you can look at your world in wire frame, flat shaded, textured,
textured and lit, and lighting only, among others. This is useful for many
reasons; for instance, it allows you to examine the soundness of your
geometry, see how the textured model may look in the game, or see what
face you may have selected at the time (Figure 2.11).

You can group objects together, which is very useful for scene manage-
ment in large scenes. I strongly suggest that you name your groups well.
As a scene becomes more complex, you can hide, select, and deal with a
grouping of objects much faster than you can with a bunch of individual
items. For example, you may have a large factory with control panels,
several different piles of crates, gun racks, and other groupings of items
in a large area.

When you work in 3D, especially in a game world where multiple meshes
or entities can occupy the same exact location as several others (in the
case of collision and detail meshes), you need to learn to find what you
are looking for quickly, isolate it, and leave everything else so others
can find what they need when they work in the same space. For this,
there are many tools that can help you. For almost any 3D application or
world editor, you should have the tools to hide or unhide items quickly;
freeze items (you can see them but not alter them, or they can’t be unhid-
den but must be specifically unfrozen); and select items by name, mesh
color, material, alphabetically, or by many other attributes. When you
are working in a game world, as opposed to working on a 3D scene that
contains only the art, you will have many other items potentially in view.
These can include (but are not limited to) AI paths, event trigger mark-
ers, and many other game-related events such as power-ups, switches,
particle effects, and player spawn points. When looking from any given
view at your world, you will see hundreds or thousands of crisscrossing
colored lines, and that is nothing but confusing. When working on your
own, it is a good idea to get used to naming your meshes and groups
at the very least; and, when working on a development team, it is very

Freeze

Drawing modes

Grouping

Selecting

3D GAME ENVIRONMENTS50

important to learn the naming conventions and other organizational con-
ventions set forth by the developers.

3D creation

Now, we get to the concepts for the actual creation of 3D assets. There
are numerous paths to the completion of a 3D model. As you learn these

FIGURE 2.11  Drawing modes let you look at your 3D world in various ways.

51THREE-dIMENSIONAL CONCEPTS

tools, you will get better at knowing what path to take. Some methods
may take longer or create messy geometry while being the perfect solu-
tion in another case. We start with basic shapes, called primitives, in 3D
modeling. These shapes are so basic and common that there are dedi-
cated methods to their creation. These shapes are usually the following
(Figure 2.12):

•	 Cube or box

•	 Cone

•	 Tube

•	 Torus

•	 Pyramid

•	 Cylinder

•	 Sphere

Some of the most common functions you will use in game modeling
involve working with vertices, edges, and faces. For vertices, we can
weld them together, break them apart, align them, and use a function
called soft select. Soft select has a gradually lessening effect on the ver-
tices surrounding the selected vertex. This is based on the parameters
you set and is very useful for forming or tweaking terrain. Edge func-
tions include chamfer and bridge, among others. And face functions (we
will use them a lot) include extrude, bevel, inset, outline, and hinge from
edge. Figure 2.13 illustrates some examples of various mesh-editing
functions.

The axis shows the direction the coordinates are running in the 3D
window. What this means is easier to understand if you know what the
Cartesian coordinate system is. The Cartesian coordinate system is a
method that determines where a point is in 3D space using three bits
of information—the x, y, and z coordinates. The standard locations for
these are as follows:

Mesh editing

Axis

Cube Cone Tube Torus Pyramid Cylinder Sphere

FIGURE 2.12  Basic 3D shapes.

3D GAME ENVIRONMENTS52

(a)
(b)

(d)

(c)

(e)

(h)(g)(f)

FIGURE 2.13  Mesh-editing functions: (a) vertex soft select, (b) add vertex, (c) chamfer edge, (d) bridge,
(e) extrude face, (f) bevel face, (g) inset face, and (h) hinge from edge.

53THREE-dIMENSIONAL CONCEPTS

•	 x = left to right

•	 y = up and down

•	 z = front to back

Using the grid makes it easier to navigate 3D space. The starting (origin)
point is 0,0,0. Any movement away from this point will result in a nega-
tive or positive value in one of the x, y, or z values (Figure 2.14).

There are many ways to view a coordinate system (Figure 2.15). A
few of the most common are as follows:

y

x 0,0

x,y = 20,–20

20

10

10 20

–20

–20 –10
–10

z

y
x

64,64,64

FIGURE 2.14  Coordinate system.

x

x

x

z

z

y

y

FIGURE 2.15  Local space, world space, and view space.

3D GAME ENVIRONMENTS54

Object space or local  This uses the xyz coordinate system of the
selected object. An object’s coordinate system is held by its pivot point.
You can actually edit the local coordinate system, moving and rotating
how the axis points are orientated.

World space  This system is fixed and centered in the world despite
your view or the objects involved. All vertex data are based on the coor-
dinate system of the world, which originates at 0,0,0.

View space  The coordinate system dynamically moves as the view or
the camera moves.

An object’s pivot point is the location at which the object rotates. In
Figure 2.16, you can see some examples of how moving the pivot point
affects the movement of an object. The pivot point can also influence
how modifiers and transforms affect a mesh (Figure 2.17). It is easier to
see the effects in the 3D application where you can see the changes in
real time.

You can draw a line in a 3D space and create a 3D object from it. This is
a great way to start odd shapes. There are 2D primitives as well, just like
3D primitives. You can start with a predefined shape or a shape created
from a line. Most splines are controlled at their vertices in four ways
(Figure 2.18).

Pivot points

2D shapes

FIGURE 2.16  An object’s pivot point is the location at which the object rotates; you can see how
moving the pivot point affects the movement of an object.

55THREE-dIMENSIONAL CONCEPTS

•	 Bezier corner—Each handle operates independently, resulting in
a peak between curves.

•	 Bezier curve—Handles will operate together to create a smooth curve.

•	 Linear—No handles; this is a straight, linear corner.

•	 Smooth—No handles; this is a smooth curve of predetermined angle.

FIGURE 2.17  The pivot point influences how modifiers and transforms affect a mesh.

3D GAME ENVIRONMENTS56

The great thing about splines is their editability. You can convert
between the corner types, add and delete points, and even perform
Boolean operations on them.

Creating 3D objects from 2D shapes

After you have created your spline path, you can perform several pro-
cedures on them to create a 3D shape. These include extrude, lathe, and
loft.

Extrude adds depth to the 2D shape (Figure 2.19).

The concept of lathing is from woodworking. A lathe is a tool that rotates
a block of wood very fast while a sharp tool is placed against the wood.

Extrude

Lathe

Bezier corner Bezier curve Linear Smooth

FIGURE 2.18  Spline control.

FIGURE 2.19  Extruding 2D shapes.

57THREE-dIMENSIONAL CONCEPTS

The carving action creates radial cuts in the wood. You can use a lathe
in 3D to create goblets, vases, and other symmetrical geometry. We will
use the lathe to create the body of a fire hydrant in the coming exercises
(Figure 2.20).

Lofting is like extruding a shape, except that it follows a spline path. In
games, this is great for pipes and hoses (Figure 2.21).

As you would expect, transforms transform an object. You can alter the
size and position of an object by moving, scaling, or rotating it. See
Figure 2.22 for some visual examples of transforms.

Finally, there are numerous ways to copy and align objects. In addi-
tion to the basic transforms, you will probably use mirror and align

Loft

Transforms

FIGURE 2.20  Lathing.

Shape

Path

Loft object

FIGURE 2.21  Lofting.

3D GAME ENVIRONMENTS58

functions a good bit. Mirror flips an object on a set axis. If you model a
car, you don’t model the entire model; you model half of it and mirror it
and attach the two halves together (Figure 2.23). Alignments combined
with copy functions can create a perfectly spaced row of columns or a
rubble of stones across a ground surface.

Deforms alter or deform a mesh. You can bend, twist, taper, ripple, and
even free-form deform a mesh. There are many deforms for meshes. See
Figure 2.24 for examples of deforms and their effects on a mesh.

If you understand these basic concepts, you can quickly learn how to
accomplish them in your 3D application of choice. Once you know that,
you will be able to create most simple game art and will have a solid base

Deforms

Z

Z

Z

Y

YX

Y X

X

FIGURE 2.22  Transforms.

59THREE-dIMENSIONAL CONCEPTS

from which to further learn on your own. In the next chapter, we will
look at shaders. Shaders are an exciting topic, as they add so much visual
depth and immersion to a scene. Although shaders can get complex, the
basics are easy to learn and implement and have a huge impact on the
visuals of a game world.

FIGURE 2.23  Mirroring.

Bend Twist Taper Ripple
Free-form deformation

Noise Melt Skew Spherify

FIGURE 2.24  Deforms.

http://taylorandfrancis.com

THE BASICS

#

This chapter is excerpted from

Quick Sketching with Ron Husband

by Ron Husband

© 2013 Taylor & Francis Group. All rights reserved.

6

Learn more

https://www.crcpress.com/Quick-Sketching-with-Ron-Husband/Husband/p/book/9780415823340?utm_source=shared_link&utm_medium=post&utm_campaign=B190204554
https://www.crcpress.com/Quick-Sketching-with-Ron-Husband/Husband/p/book/9780415823340?utm_source=shared_link&utm_medium=post&utm_campaign=B190204554

My definition of a “true” quick sketch is simply “a sketch done quickly” (i.e., an
image captured from a live object on paper in about twenty to thirty seconds). My
quick sketches differ from typical classroom quick sketch/gesture drawings that are
usually done in one- to two-minute poses by a still or posed model. Typically, “built
in” to the models’ poses are balance, perspective, proportion, silhouette, etc. for
the duration of the pose. Most models work hard to give the artist the best poses
possible and the results are “frozen in time” for the artist to capture everything on
paper.

It is my belief that in order to capture a true quick sketch, one must also cap-
ture the action seen with the eye. The eye then relays what was observed to the
brain and is coupled with real life observations, action analyses, photographs,
books read, and any other tips of wisdom from past and present art instruction,
and flows out the end of one’s pen or pencil. This goes beyond drawing a “posed
pose” to capturing on paper what was there, never to be repeated again in the
same way.

Therefore quick sketches should depict plainly and without question what
is going on, the who, what, when, where, why, and how. It may not necessar-
ily answer the when or where, but one look should tell you who (male, female,
young, or old), what the captured subject is doing, and how it’s being done. This
practice has led to my lifelong love affair with quick sketching. My sketchbook is
so much a part of me I feel I’m not fully dressed unless I have my sketchbook in
hand.

What Motivates You?

Find something you love to draw: men, women, older men, older women, chil-
dren, jockeys, horses, you name the living subject and you can take a lifetime
observing them. Because they are living and breathing, they will all walk, run,
crawl, jump, or drag along in a variety of ways depending on location, motiva-
tion, and any other factors that happen at a particular moment in time. Houses,
man-made objects, bowls of fruit, etc. can be drawn or painted in marvelous ways
and they will always be there in the same lifeless way until some outside force
moves them. Living humans and animal life are constantly animating “a life story,”
waiting to be stamped on paper by your pen or pencil.

29

The Basics 1

30 Quick Sketching with Ron Husband

Simple Shapes

Think of the subject in simple shapes. Observe the objects around you: tables,
chairs, televisions, books, etc. all consist of shapes—circles, ovals, squares, rect-
angles, or some combination of these basic shapes.

Can you see the shape in your subjects?

Circle Triangle Square Rectangle

TIP 1

I use an assortment of different sketchpads. My everyday sketchpad is 8½ by
11 inches and ranges from inexpensive paper to a more expensive acid-free,
white stock pad. When I am going to a formal gathering a regular pad of
paper would look out of place (such as a formal wedding or retirement party)
so I use an 8½ by 6 inch fine leather-bound book.
I also like to use a black ink pen. I’ve tried other pens but the Pilot V5 gives me
a nice thin line without smearing or running.
Once I have my paper and pen ready, I usually sit down and do some practice
drawings. (I think about the basic shape: circle, triangle, square or rectangle.)

 The Basics 31

32 Quick Sketching with Ron Husband

People and animals are made up of similar shapes, with smooth edges; so
again, look for these basic shapes in the objects you draw.

Observing these shapes in your subjects helps develop “an eye” for making
identifiable shapes quickly. Remember, we are laying the foundation for quick
sketching. Observation is key to analyzing any action or activity. Making mental
notes of how someone does a specific action pays dividends when it is time to put
pencil to paper. Artists must become people watchers; recognizing the differences
in those who make up the human race. As bird watchers note the peculiarities of
how one species of fowl behaves juxtaposed to another, we’re drawn to the real-
ization that there are as many ways of doing things (i.e., walking, standing, ges-
turing, etc.) as there are people on the face of the earth.

Body Types

There are as many different body types in humans (and animals) as there are
individuals on this planet. The one you choose to commit to paper must convey
enough information to tell the viewer who it is, their age, what they are doing, and
take into account any interesting body characteristics.

The ancient Egyptian artists were greatly aware of giving the most information
possible to the viewer. By looking at most two-dimensional Egyptian artwork, it is
not uncommon to see a straight-on eye in a profile head. This gives more informa-
tion about the eye than a side view can and the profile head gives more informa-
tion than a straight-on view of the head. For example, the straight-on head cannot
tell you the shape of the nose or how far the brow hangs over the eyes or the
shape of the chin. By using a straight-on view of the upper torso, combined with a
profile of both legs, the ancient artist has attempted to provide us with the greatest
amount of information about the figure.

 The Basics 33

 Quick sketching is an attempt to get this kind of information on paper in as
short a time as possible and have a drawing that conveys enough information to
be easily recognizable; a sizeable task, but one that can be mastered through the
discipline of constantly drawing, drawing, and drawing some more.

A good drawing is one that utilizes perspective, proportion, weight, and bal-
ance to convey to the viewer its own unique story. In order to accomplish this, it is
important to have a working knowledge of the skeleton and muscles of the human
body.

Skeleton/Muscle Tone/Fat

Think about the many body types you see daily. Not the TV/movie, photoshopped,
magazine bodies, but the ones you see in everyday life. Keep in mind the one you
choose to commit to paper is “one of a kind” even though he/she has the same
body parts as everybody else.

34 Quick Sketching with Ron Husband

Thin body type Muscular body type (skeleton remains unchanged)

 The Basics 35

Heavy body type (skeleton remains unchanged)

36 Quick Sketching with Ron Husband

Movement and Balance

Keep flexible parts flexible and rigid parts rigid

 The Basics 37

Balance/balance in motion—right arm moves with left leg and vice versa

38 Quick Sketching with Ron Husband

 The Basics 39

40 Quick Sketching with Ron Husband

Artists must become people watchers, recognizing the difference in those who
make up the human race and analyzing body types. (Muscle, fat, and the clothes
on top of the skeleton display body type.) Remember that a skeleton is the same
for all body types.

Observation is the key to analyzing any action or activity. Take walking, for
instance. Everyone has their own unique gait and often their walk is influenced
by their physical makeup (tall, short, thin, or heavy set), and/or their attire (high
heels, no shoes, etc.). These factors all influence the walk. Alter the surface or even
the weather conditions and the possibilities are endless of how one traverses the
terrain. The challenge as an artist is to quickly capture that on paper.

 The Basics 41

A good drawing is one that utilizes perspective, proportion, weight, and bal-
ance to convey to the viewer its own unique story. In order to accomplish this, it is
important to have a working knowledge of the skeleton and muscles of the human
body.

Think about the negative space around the body parts. This will help you make
the drawing interesting and with clarity. Remember you have to be your own edi-
tor, with the freedom to move a limb ever so slightly as to not lose the essence of
the gesture, but enough to show more clearly in the pose.

Don’t lose sight of the goal; to put enough lines on paper to answer the who,
what, when, where, why, and how questions. These questions may be clear to
you, but do they communicate to your viewing audience?

Summary

This chapter has focused on introducing you to quick sketching and the basics
of identifying and utilizing the four basic shapes when analyzing and capturing
your subjects in drawing. Anatomy and body types were discussed, leading into
the importance of weight, proportion, and balance. Bringing all these elements
together will truly help you along the way as you begin the art of quick sketching.

	GDC 2019 FreeBook
	Game Design Workshop
	GDC 2019 FreeBook
	3D Game Textures
	GDC 2019 FreeBook
	Game Anim
	GDC 2019 FreeBook
	Game Engine Architecture
	GDC 2019 FreeBook
	3D Game Environments
	GDC 2019 FreeBook
	Quick Sketching

